martes, 22 de junio de 2010
martes, 15 de junio de 2010
AHORA, EL MUNDO MIRA AL SENA
Con la formación técnica y tecnológica que ofrece, y con toda su experiencia acumulada de más de medio siglo, la entidad es hoy un actor dinámico que trasciende las fronteras, pues brinda cooperación a diferentes naciones de América y otros continentes.
La entidad también se ha preocupado por colaborar en situaciones de desastres en países hermanos. Ese es el caso de Haití, que solicito la ayuda de diferentes naciones de la región, luego de sufrir un devastador terremoto en enero del 2010 Allí, el SENA, como entidad de formación, envío 30 instructores para formar a 200 haitianos en construcción.
Además de la anterior, desde mayo pasado, esa misión trabaja en otras cuatro estrategias fundamentales de cooperación: construcción de viviendas con el método de autoconstrucción, elaboración de normas técnicas que se deben tener en cuenta en construcciones sismorresistentes, desarrollo de estudios técnicos para mejorar las mezclas de construcción y creación de la Escuela De Formación Para El Trabajo, homologa del SENA.
Si bien la ayudas de otros países fueron las que dieron impulso al SENA en sus primeros años de vida, la entidad termino el siglo pasado con un casi nulo relacionamiento con el exterior. Pero en la primera década de este dio un giro y desplegó una intensa labor para ganarse un lugar en el concierto internacional, al punto de que se convirtió en aliado importante de la Chancillería Colombiana.
miércoles, 26 de mayo de 2010
NIVELACION DIRECTA
Para la nivelación directa se requiere un instrumento que sea capaz de dirigir hacia A y B visuales horizontales para hacer una lectura sobre la mira.
Cuando los puntos cuya cota se desea averiguar, no son visibles, o están a gran distancia, se recurre a realizar sucesivos cambios de la posición del instrumental mediante puntos llamados de cambio, sobre los que se hace una lectura de adelante (previa al cambio) y una lectura de atrás (luego del cambio) ya que su cota es conocida. Así se van ligando las mediciones para que compatibilicen con un mismo sistema de referencia.
NIVELACION
MIRA
La mira se puede describir como una regla de cuatro metros de largo, graduada en centímetros y que se pliega en la mitad para mayor comodidad en el transporte. Además de esto, la mira consta de una burbuja que se usa para asegurar la verticalidad de ésta en los puntos del terreno donde se desea efectuar mediciones, lo que es trascendental para la exactitud en las medidas. También consta de dos manillas, generalmente metálicas, que son de gran utilidad para sostenerla.
TRIPODE
El trípode es un instrumento que tiene la particularidad de soportar un equipo de medición como un taquímetro o nivel, su manejo es sencillo ,pues consta de tres patas que pueden ser de madera o de aluminio, las que son regulables para así poder tener un mejor manejo para subir o bajar las patas que se encuentran fijas en el terreno. El plato consta de un tornillo el cual fija el equipo que se va a utilizar para hacer las mediciones.
El tipo de trípode que se utilizó en esta ocasión tiene las siguientes características:
Patas de madera que incluye cinta para llevarlo en el hombro.
Diámetro de la cabeza: 158 mm.
Altura de 1,05 m. extensible a 1,7 m.
Peso: 6,5 Kg.
NIVEL
El nivel, a su vez, es un instrumento que sirve para medir diferencias de altura entre dos puntos, para determinar estas diferencias, este instrumento se basa en la determinación de planos horizontales a través de una burbuja que sirve para fijar correctamente este plano y un anteojo que tiene la función de incrementar la visual del observador. Además de esto, el nivel topográfico sirve para medir distancias horizontales, basándose en el mismo principio del taquímetro. Existen también algunos niveles que constan de un disco acimutal para medir ángulos horizontales, sin embargo, este hecho no es de interés en la práctica ya que dicho instrumento no será utilizado para medir ángulos.
TAQUIMETRO
El taquímetro es un instrumento topográfico que sirve tanto para medir distancias, como ángulos horizontales y verticales con gran precisión. En esencia, un taquímetro consta de una plataforma que se apoya en tres tornillos de nivelación, un círculo graduado acimutal (en proyección horizontal), un bastidor (aliada) que gira sobre un eje vertical y que está provisto de un índice que se desplaza sobre el círculo acimutal y sirve para medir los ángulos de rotación de la propia aliada, y dos montantes fijos en el bastidor, sobre los cuales se apoyan los tornillos de sustentación de un anteojo que, a su vez, gira alrededor de un eje horizontal. Al anteojo está unido un círculo graduado cenital (en proyección vertical) sobre el cual, mediante un índice fijo a la aliada, se efectúan las lecturas de los ángulos de rotación descritos por el anteojo. Unos tornillos de presión sirven, en caso necesario, para fijar entre sí las diversas partes del instrumento. Se pueden efectuar pequeños desplazamientos de la aliada y del anteojo mediante tornillos micrométricos. Las lecturas sobre dos círculos graduados de los ángulos de desplazamiento acimutal y cenital se realizan por medio de nonios o de microscopios, o bien, en los teodolitos más precisos, por sistemas de tornillos micrométricos. El teodolito posee, además, un sistema de niveles que cumple el rol de verificar que el la plataforma se encuentre completamente horizontal y una plomada óptica que sirve para la puesta precisa en estación del instrumento. El retículo del teodolito consta de cuatro hilos, vertical, superior, medio e inferior, el primero sirve para ubicar horizontalmente, de forma precisa, el punto donde se desea hacer la medición, mientras que los otros tres son de utilidad para calcular la distancia horizontal y el desnivel desde la estación al punto.
sábado, 8 de mayo de 2010
PLANO DE CIMENTACIÓN
La base sobre la que descansa todo el edificio o construcción es lo que se le llama cimientos. Rara vez estos son naturales. Lo más común es que tengan que construirse bajo tierra. La profundidad y la anchura de los mismos se determinan por calculo, de acuerdo con las características del terreno, el material de que se construyen y la carga que han de sostener.
El plano de cimentación interesa también fundamentalmente desde el punto de vista de su construcción. De ahí que se delineen atendiendo nada mas que a su forma y disposición.
La representación más sencilla consiste en el trazado de las líneas exteriores de los cimientos y de su eje, que es también el de las paredes que descansan sobre ellos. El eje se delinea para facilitar el replanteo de los cimientos sobre el terreno, el cual se utiliza como guía para apertura de las zanjas. Es frecuente añadir a la planta de cimientos la representación con líneas de trazos, del ancho de las paredes que apoyan sobre ella. Las variantes que pueden darse suelen ser en la representación de las paredes: representación solo parcial en los ángulos, representación por medio de tramados, etc.
CONTENIDO DEL PLANO:
Indicar limites de terreno.
Indicar ejes principales o constructivos en ambos lados.
Indicar cotas parciales, acumulativas y totales.
Indicar banco de nivel.
Indicar banco de trazo.
Indicar ángulos internos de ejes principales.
Indicar curvas de nivel del terreno natural.
Indicar el perfil del terreno natural.
Indicar el perfil del proyecto al nivel del firme.
Un corte longitudinal.
Un corte transversal.
Detalles de cimientos: planta y sección a la misma escala.
Cuadro de simbología.
Escala grafica y numérica.
Tabla de especificaciones.
Norte.
Membrete.
GENERALIDADES
Definición:
La cimentación es la parte estructural del edificio, encargada de transmitir las cargas al terreno, el cual es el único elemento que no podemos elegir, por lo que la cimentación la realizaremos en función del mismo. Al mismo tiempo este no se encuentra todo a la misma profundidad por lo que eso será otro motivo que nos influye en la decisión de la elección de la cimentación adecuada.
La finalidad de la cimentación es sustentar estructuras garantizando la estabilidad y evitando daños a los materiales estructurales y no estructurales. Los problemas que se presentan en la cimentación de un edificio o una estructura pueden dividirse en:
Estudio del material que forma el terreno en que se construirá el edificio.
Estudio realizado en el laboratorio de mecánica de suelos.
Un cimiento es aquella parte de la estructura que recibe la carga de la construcción y la transmite al terreno por medio del ensanchamiento de su base. La base sobre la que descansa todo el edificio o construcción es lo que se le llama cimientos. Rara vez estos son naturales. Lo más común es que tengan que construirse bajo tierra. La profundidad y la anchura de los mismos se determinan por calculo, de acuerdo con las características del terreno, el material de que se construyen y la carga que han de sostener.
Clasificación de cimentaciones:
Estas pueden ser superficiales, profundas y especiales.
Superficiales :
Son superficiales cuando transmiten la carga al suelo por presión bajo su base sin rozamientos laterales de ningún tipo. Un cimiento es superficial cuando su anchura es igual o mayor que su profundidad. engloban las zapatas en general y las losas de cimentación. Los distintos tipos de cimentación superficial dependen de las cargas que sobre ellas recaen.
Puntuales—zapatas aisladas----- aislada, centrada, combinada, medianera, esquina
Lineales—zapatas corridas----- bajo muro, bajo pilares, bajo muro y pilares
Superficiales—losas de cimentación
Ejemplos: zapata corrida de concreto reforzado
cimentación corrida de concreto ciclópeo
zapatas comunes o combinadas
losa de cimentación
Profundas:
Son profundas aquellas que transmiten la carga al suelo por presión bajo su base, pero pueden contar, además, con rozamiento en el fuste.
Ejemplos: cimentación a base de pilotes
Pilas o cajones
Cilindros de cimentación
Generalmente, toda construcción sufre un asentamiento en mayor o menor grado, el cual dependiendo de lo adecuado que haya sido el estudio de la mecánica de suelo y la cimentación escogida. No obstante, un asentamiento no causara mayores problemas cuando el hundimiento sea uniforme y se hayan tomado las debidas precauciones para ello. Sin embargo, en las cimentaciones aisladas y en las corridas, con frecuencia aparecen hundimientos diferenciales más pronunciados en el centro de la construcción. Esto se debe principalmente a la presencia de los bulbos de presión y a la costumbre generalizada de mandar mayores cargas en la parte central de la edificación.
Por lo anterior, resulta más conveniente cargar el edificio en los extremos que en el centro y diseñar la cimentación de tal manera que esta permanezca muy bien ligada entre sí,
Procurando siempre que los ejes de cimentación se encuentren suficientemente alejados, con lo cual se evitara que los bulbos de presión se encimen unos con otros y provoquen sobre fatigas en el suelo.
Si el peso de la construcción hace que las zapatas empiecen a juntarse, es mejor optar por la cimentación corrida o losa de cimentación.
Cuando el peso de un edificio es muy grande, al grado que el terreno es ya incapaz de soportarlo, será entonces necesario recurrir a los pilotes, pilas o cajones, para transmitir la carga a otros estratos más profundos y resistentes del suelo, lo cual se logra con la fricción a lo largo del pilote (pilotes de fricción), o bien con pilotes que transmitan la carga a un estrato o manto con mayor capacidad soportante (pilotes de punta apoyados en capa resistente.
Cimentaciones superficiales
Los cimientos superficiales son aquellos que descansan en las capas superficiales del suelo, las cuales son capaces de soportar la carga que recibe de la construcción por medio de la ampliación de base.
El material mas empleado en la construcción de cimientos superficiales es la piedra (básicamente tratándose de construcciones ligeras), en cualquiera de sus variedades siempre y cuando esta sea resistente, maciza y sin poros. Sin embargo, el concreto armado es un extraordinario material de construcción y siempre resulta más recomendable.
Cimiento ciclópeo:
En terrenos cohesivos donde la zanja pueda hacerse con parámetros verticales y sin desprendimientos de tierra, el cimiento de concreto ciclópeo es sencillo y económico.
El procedimiento para su construcción consiste en ir vaciando dentro de la zanja piedras de diferentes tamaños al tiempo que se vierte la mezcla de concreto en proporción 1:3:5, procurando mezclar perfectamente el concreto con las piedras, de tal forma que se evite la continuidad en sus juntas.
Cimientos de concreto armado:
Los cimientos de concreto armado se utilizan en todos los terrenos pues aunque el concreto es un material pesado, presenta la ventaja de que en su calculo se obtienen, proporcionalmente, secciones relativamente pequeñas si se les compara con las obtenidas en los cimientos de piedra.
Cimentaciones corridas:
Es un tipo de cimiento de hormigón o de hormigón armado que se desarrolla linealmente a una profundidad y con una anchura que depende del tipo de suelo. Se utiliza primordialmente para transmitir adecuadamente cargas proporcionadas por estructuras de muros portantes. Se usa también para cimentar muros de cerca, muros de contención por gravedad, para cerramientos de elevado peso, etc. Las cimentaciones corridas no son recomendables cuando el suelo es muy blando.
Esfuerzos de terreno (qs)
Para esfuerzos de terreno menores a 1 kg/cm2 : se estimara un peso propio del cimiento corrido en el orden de 10% de la descarga.
Para esfuerzos de terreno mayores a 1 kg/cm2 pero menor a 2 kg/cm2 : se estimara un peso propio de cimiento corrido en el orden del 8% de la descarga.
Para esfuerzos de terreno mayores a 2 kg/cm2 : se estimara un peso propio de cimiento corrido en el orden de un 6% de la descarga.
Es importante que los cimientos sean concéntricos con los muros que soportan, con esto se evita sobrecargar uno de los bordes a resultas de la excentricidad producida. Cuando un muro tenga adosado un pilar o un contrafuerte, el cimiento debe ensancharse al llegar al mismo con un vuelo por lo menos igual al correspondiente del muro.
Esta formada por concreto ciclópeo, el cual es 40% piedra bola y el 60% de concreto. Este tipo de cimentación es comúnmente utilizado en casas habitación y es la que recibe la carga de la súper-estructura transmitiéndola al terreno.
DETALLE 1:
contracimiento de concreto armado reforzado con 4 varillas #3 y estribos del #2 espaciados a 4 cms, amarrados con alambre recocido calibre #8.
Relleno con grava cementado, suelo cemento, tepetate a piso. Mada en sepas o capas de 20 cms de espesor con sistema de riego a mano.
Concreto ciclópeo: 40% de piedra brasa y 60% de proporción 1: 5:2.
RECOMENDACIONES: se deberá mojar la piedra brasa para que no absorba la humedad del mortero, de la misma forma debe de humedecerse el fondo de la excavación evitando que se formen charcos.
Cuando la profundidad de la cimentación corrida es mas de 1 m se recomienda utilizar otro tipo de cimentación. El ancho mínimo de esta cimentación suele ser de 50 cm, ya que es muy difícil para el trabajador excavar un ancho menor, y se recomienda que a mayor profundidad este sea más ancho.
Cimentación por zapatas:
En general son de planta cuadrada, pero en la proximidad de los lindes suelen hacerse rectangulares o circulares cuando los útiles de excavación dejan los pozos de esta forma. Se hacen de hormigón armado para que sean capaces de distribuir fuertes cargas en una superficie importante. Esta solución será satisfactoria mientras las zapatas no se junten demasiado; de ocurrir esto será mejor la cimentación corrida. Esta formada por concreto armado, esto quiere decir que esta conformada por concreto y acero, el cual debe ir armado según los cálculos de las cargas que reciba dicha cimentación. Este tipo de cimentación se utiliza en obras grandes en las cuales debido al área de construcción y al terreno, no se pueden utilizar las cimentaciones corridas.
Las zapatas pueden ser de hormigón en masa o armado con planta cuadrada o rectangular como cimentación de soportes verticales pertenecientes a estructuras de edificación, sobre suelos homogéneos de estratigrafía sensiblemente horizontal.
Las zapatas aisladas para la cimentación de cada soporte en general serán centradas con el mismo, salvo las situadas en linderos y medianeras, serán de hormigón armado para firmes superficiales o en masa para firmes algo más profundos.
De planta cuadrada como una opción general. De planta rectangular, cuando las cuadradas equivalentes queden muy próximas, o para regularizar los vuelos en los casos de soportes muy alargados o de pantallas.
Como nota importante hay que decir que se independizaran las cimentaciones y las estructuras que esten situados en terrenos que presenten discontinuidades o cambios sustanciales de su naturaleza, de forma que las distintas partes del edificio queden cimentadas en terrenos homogéneos. Por lo que el plano de apoyo de la cimentación será horizontal o ligeramente escalonado suavizando los desniveles bruscos de la edificación.
La profundidad del plano de apoyo o elección del firme, se fijara en función de las determinaciones del informe geotécnico, teniendo en cuenta que el terreno que queda por debajo de la cimentación no quede alterado, pero antes para saber que tipo de cimentación vamos a utilizar tenemos que conocer el tipo de terreno según el informe geotécnico.
DETALLE 2.
Zapatas aisladas.
Es aquella zapata en la que descansa o recae un solo pilar. Encargada de transmitir a través de su superficie de cimentación las cargas al terreno.
Una variante de la zapata aislada aparece en edificios con junta de dilatación y en este caso se denomina “zapata ajo pilar en junta de diapasón”.
La zapata no necesita junta pues al estar empotrada en el terreno no se ve afectada por los cambios térmicos, aunque en las estructuras si que es normal además de aconsejable poner una junta cada 30 mts aproximadamente, en estos casos la zapata se calcula como si sobre ella solo recayese un único pilar.
Importante es saber que además del peso del edificio y las sobrecargas, hay que tener también en cuenta el peso de las tierras que descansan sobre sus vuelos.
Zapata aislada cuadrada.
La zapata aislada comúnmente se utiliza para transportar la carga concentrada de una columna
cuya función principal consiste en aumentar el área de apoyo en ambas direcciones.
En general, su construcción se aconseja cuando la carga de la columna es aproximadamente 75% mas baja que la capacidad de carga admisible del suelo. Se recomienda que la zapata aislada deberá emplearse cuando el suelo tenga una capacidad de carga admisible no menor de 10000 kg/m2, con el fin de que sus lados no resulten exageradamente grandes.
Él calculo de estas zapatas se basa en los esfuerzos críticos a que se encuentran sometidas, pero su diseño lo determinan el esfuerzo cortante de penetración, la compresión de la columna sobre la zapata, el esfuerzo de flexión producido por la presión ascendente del suelo contra la propia zapata, los esfuerzos del concreto en el interior de la zapata, así como el deslizamiento o falta de adherencia del acero con el concreto.
Zapata aislada rectangular.
Las zapatas aisladas rectangulares son prácticamente iguales a las cuadradas; ambas trabajan y se calculan en forma similar y se recomiendan en aquellos casos donde los ejes entre columnas se encuentran limitados o demasiado juntos.
Por su forma rectangular presenta dos secciones criticas distintas para calcular por flexión. En zapatas que soporten elementos de concreto, será el plomo vertical tangente a la cara de la columna o pedestal en ambos lados de la zapata.
En zapatas aisladas rectangulares en flexión en dos direcciones, el refuerzo paralelo al lado mayor se distribuirá uniformemente.
3. Zapata aislada descentradas.
Las zapatas aisladas descentradas tienen la particularidad de que las cargas que sobre ellas recaen, lo hacen en forma descentrada, por lo que se producen unos momentos de vuelco que habrá de contrarrestar. Pueden ser de medianeria y de esquina.
Las formas de trabajo se solucionan y realizan como la zapata aislada con la salvedad de la problemática que supone el que se produzcan momentos de vuelo, debido a la excentricidad de las cargas. Algunas de las soluciones para evitar el momento de vuelco seria utilizando una viga centradora o bien vigas o forjados en planta primera. Utilizando viga centradora, esta a través de su trabajo a flexión, tiene la misión de absorber el momento de vuelco de la zapata descentrada. Deberá tener gran inercia y estar fuertemente armada.
Con vigas o forjados en planta primera, para centrar la carga podemos recurrir a esta opción. La viga o forjado deberá dimensionarse o calcularse para la combinación de la flexión propia mas la tracción a la que se ve sometida con el momento de vuelco inducido por la zapata.
Zapatas corridas.
Las zapatas corridas pueden ser bajo muros, o bajo pilares, y se define como la que recibe cargas lineales, en general a través de un muro, que si es de hormigón armado, puede transmitir un momento flector a la cimentación. Son cimentaciones de gran longitud en comparación con su sección transversal. Las zapatas corridas están indicadas cuando:
- se trata de cimentar un elemento continuo
- queremos homogeneizar los asientos de una alineación de pilares y nos sirve para arriostramiento
- queremos reducir el trabajo del terreno
- para puentear defectos y heterogeneidades del terreno
- por la proximidad de las zapatas aisladas, resulta más sencillo realizar una zapata corrida
Zapata corrida de concreto armado para apoyos aislados.
Cuando la cimentación esta diseñada para una estructura formada por apoyos aislados
(columnas) y la resistencia del terreno no tiene gran capacidad de soporte, serán mas adecuada
la zapata corrida para unir dos o más columnas. Dichas columnas podrán mandar a la zapata
cargas simétricas, lo que dará como resultado una zapata de ancho uniforme.
Cuando las cargas son asimétricas, la zapata tendrá anchos distintos para transmitir al terreno una fatiga uniforme.
La zapata se soluciona dándole una forma trapezoidal, pero presenta dificultad en sus armados lo que hace que no resulte practica desde el punto de vista constructivo.
El cimiento se debe construir mas fácilmente calculando la zapata como aislada, con su área correspondiente para cada apoyo, uniendo ambas zapatas con la contratrabe. Esta solución presenta la ventaja de tener únicamente dos medidas en su armado principal.
La contratrabe juega un papel importante en las zapatas corridas, pues de no emplearla seria necesario recurrir a un espesor muy grande en la placa o losa de la zapata para evitar la falla por flexión o por cortante producida por la reacción del terreno. Estas contratrabes le dan rigidez a la zapata y soportan, además, los esfuerzos de flexión producidos por la reacción del terreno.
Losa de cimentación:
Consiste en soportar todo el edificio sobre una losa de hormigón armado, extendida a una superficie tal que tomando la carga total que transmite el edificio y dividiéndola por ella no solicite al suelo bajo un esfuerzo mayor que el de su capacidad portante admisible. Para edificios pequeños el espesor de losa esta entre 15 y 22.5 cm; y para edificios mayores se usan espesores de 22.5 a 37.5 cms.
Cuando son insuficientes otros tipos de cimentación o se prevean asientos diferenciales en el terreno, aplicamos la cimentación por losas. En general, cuando la superficie de cimentación mediante zapatas aisladas o corridas es superior al 50% de la superficie total del solar, es conveniente el estudio de cimentación por placas o losas. También es frecuente su utilización cuando la tensión admisible del terreno es menor de 0.8 kg/cm2.
Una losa de cimentación es entonces un elemento estructural de hormigón armado cuyas dimensiones en planta son muy elevadas; define un plano normal a la dirección de soportes.
Cimentación flotante:
Cuando la capacidad portante del suelo es muy pequeña y el peso del edificio importante, puede suceder que el solar de que disponemos no tenga superficie como para albergar una losa que distribuya la carga; en tal caso es posible construir un cimiento que flote sobre el suelo.
Cimentaciones profundas
Las cimentaciones profundas se encargan de transmitir las cargas que reciben de una construcción a mantos resistentes más profundos; son profundas aquellas que transmiten la carga al suelo por presión bajo su base, pero pueden contar, además, con rozamiento en el fuste; las clasificamos en:
Pilotes.
Cilindros.
Cajones.
Cimentación por pilotes:
En ocasiones, cuando comenzamos a realizar la excavación para la ejecución de obra, podemos encontrarnos diversas dificultades para encontrar el estrato resistente o firme donde queremos cimentar. O simplemente se nos presenta la necesidad de apoyar una carga aislada sobre un terreno sin firme, o difícilmente accesible por métodos habituales.
Los cimientos, a fin de distribuir la carga, pueden extenderse horizontalmente, pero también pueden desarrollarse verticalmente hasta alcanzar estratos más bajos capaces de soportarla. En estos casos se recurre a la solución de cimentación profunda, que se constituye por medio de muros verticales profundos de hormigón, los muros pantalla o bien a base de pilares hincados o perforados en el terreno, denominados pilotes.
Un pilote es un soporte, normalmente de hormigón armado, de una gran longitud en relación a su sección transversal, que puede hincarse o construirse “in situ” en una cavidad abierta en el terreno. Los pilotes son columnas esbeltas con capacidad para soportar y transmitir cargas a estratos más resistentes o de roca, o por rozamiento en el fuste. Por lo general, su diámetro o lado no es mayor de 60 cms. Constituye un sistema constructivo de cimentación profunda al que denominaremos cimentación por pilotaje. Los pilotes son necesarios cuando la capa superficial o suelo portante no es capaz de resistir el peso del edificio o bien cuando esta se encuentra a gran profundidad; también cuando el terreno esta lleno de agua y ello dificulta los trabajos de excavación. Con la construcción de pilotes se evitan edificaciones costosas y volúmenes grandes de cimentación.
Los pilotes pueden alcanzar profundidades superiores a los 40 mts teniendo una sección transversal de 2-4 mts, pudiendo gravitar sobre ellos una carga de 2000 t. Los pilotes deben recibir fuerzas longitudinales de compresión, ya que las cargas por flexión producen deformaciones mayores con alto grado de peligrosidad; sin embargo, en ocasiones deberan tomarse en cuenta otras solicitaciones de cargas horizontales como viento y sismo. Una excentricidad por pequeña que sea provoca cambios importantes en los esfuerzos de los pilotes. La capacidad de estos para soportar las cargas dependerá de la resistencia desarrollada entre ellos y el subsuelo.
De acuerdo con su función de trabajo, los tipos de pilotes son:
Pilotes apoyados en manto resistente.
Pilotes trabajando por fricción del fuste con el suelo.
Una combinación de ambos, es decir, por apoyo directo en la capa resistente y por rozamiento sobre una parte de su longitud empotrada.
Los pilotes deberán agruparse abajo y alrededor de cada elemento de carga, procurando obtener siempre un apoyo que sea lo más rígido posible. No se aconseja apoyar el elemento de carga solo sobre uno de los pilotes, ya que durante su hincado podrá quedar desplazado de su posición original y ocasionar una flexión por excentricidad de la carga.
Asimismo, los pilotes se pueden distribuir en una zapata cuadrada, rectangular, circular, hexagonal, etc., de tal manera que coincida la resultante de cargas con la de los pilotes, permitiendo que entre ellos se encuentre una separación no menor de 1.25 m o tres diámetros entre sus centros.
La capacidad de carga de un pilote se reduce cuando este trabaja en un conjunto de pilotes; además, esta sujeto a cargas excéntricas y, quizás, a fuerzas de levantamiento que producen deformaciones indeseables. Este es un detalle que siempre debe tenerse presente, así como la separacion entre los pilotes para evitar la influencia de tensiones entre ellos.
Los bulbos de presion se sobreponen cuando los pilotes se colocan muy juntos, causando fatigas excesivas y hundimientos en el terreno
Los pilotes pueden tener gran diversidad de formas, longitud, union en sus tramos y procedimientos de hincado; asimismo, los hallamos de seccion circular, cuadrada, hexagonal, octagonal, etc.
La perforación que tienen los pilotes a lo largo de sus tramos sirve para saber, con seguridad, si este se conservara o no vertical a la hora del hincado; ademas, el orificio central sirve para colocar un refuerzo de acero capaz de absorber esfuerzos de flexion, tensión y cortante.
Los pilotes que se usan mas son los prefabricados de concreto, los de concreto armado, los de concreto comprimido, los de acero, los presforzados, y en menor proporcion, los de madera.
Todos ellos pueden hincarse desde una profundidad de 3 a 40 m; en caso de requerirse una profundidad mayor, se pueden formar con tramos de 1 m o de mayor longitud que al soldarse quedan como pilotes de una sola pieza.
La capacidad de carga de un pilote depende de muchos factores, como propiedades del suelo, peso del martillo, frecuencia de los golpe, nivel freático, etc, de tal manera que es difícil determinar su capacidad portante si antes no se hace una prueba de carga. Dicha prueba consiste en cargarle al pilote un peso conocido que determine su capacidad y su asentamiento en el suelo.
La eficacia de un pilote depende de:
El rozamiento y la adherencia entre el suelo y el fuste del pilote.
La resistencia por punta, en el caso de transmitir compresiones. Ante posibles esfuerzos de tracción, se puede ensanchar la parte inferior del pilote, de forma que trabaje el suelo superior.
El empleo de cimentaciones mediante pilotaje esta indicado en los siguientes casos:
Cuando la carga transmitida por las estructuras no puede ser distribuida en el terreno de forma uniforme mediante el empleo de sistemas de cimentación directa como zapatas o losas.
Cuando el nivel del firme no puede ser alcanzado de forma sencilla o se encuentra a gran pofundidad.
Cuando los estratos superiores del terreno son poco consistentes hasta cotas profundas, contienen gran cantidad de agua o bien se necesita cimentar por debajo del nivel freático.
Cuando se prevea que los estratos inmediatos a la superficie de cimentación pueden determinar asientos imprevisibles de cierta importancia.
La base sobre la que descansa todo el edificio o construcción es lo que se le llama cimientos. Rara vez estos son naturales. Lo más común es que tengan que construirse bajo tierra. La profundidad y la anchura de los mismos se determinan por calculo, de acuerdo con las características del terreno, el material de que se construyen y la carga que han de sostener.
El plano de cimentación interesa también fundamentalmente desde el punto de vista de su construcción. De ahí que se delineen atendiendo nada mas que a su forma y disposición.
La representación más sencilla consiste en el trazado de las líneas exteriores de los cimientos y de su eje, que es también el de las paredes que descansan sobre ellos. El eje se delinea para facilitar el replanteo de los cimientos sobre el terreno, el cual se utiliza como guía para apertura de las zanjas. Es frecuente añadir a la planta de cimientos la representación con líneas de trazos, del ancho de las paredes que apoyan sobre ella. Las variantes que pueden darse suelen ser en la representación de las paredes: representación solo parcial en los ángulos, representación por medio de tramados, etc.
CONTENIDO DEL PLANO:
Indicar limites de terreno.
Indicar ejes principales o constructivos en ambos lados.
Indicar cotas parciales, acumulativas y totales.
Indicar banco de nivel.
Indicar banco de trazo.
Indicar ángulos internos de ejes principales.
Indicar curvas de nivel del terreno natural.
Indicar el perfil del terreno natural.
Indicar el perfil del proyecto al nivel del firme.
Un corte longitudinal.
Un corte transversal.
Detalles de cimientos: planta y sección a la misma escala.
Cuadro de simbología.
Escala grafica y numérica.
Tabla de especificaciones.
Norte.
Membrete.
GENERALIDADES
Definición:
La cimentación es la parte estructural del edificio, encargada de transmitir las cargas al terreno, el cual es el único elemento que no podemos elegir, por lo que la cimentación la realizaremos en función del mismo. Al mismo tiempo este no se encuentra todo a la misma profundidad por lo que eso será otro motivo que nos influye en la decisión de la elección de la cimentación adecuada.
La finalidad de la cimentación es sustentar estructuras garantizando la estabilidad y evitando daños a los materiales estructurales y no estructurales. Los problemas que se presentan en la cimentación de un edificio o una estructura pueden dividirse en:
Estudio del material que forma el terreno en que se construirá el edificio.
Estudio realizado en el laboratorio de mecánica de suelos.
Un cimiento es aquella parte de la estructura que recibe la carga de la construcción y la transmite al terreno por medio del ensanchamiento de su base. La base sobre la que descansa todo el edificio o construcción es lo que se le llama cimientos. Rara vez estos son naturales. Lo más común es que tengan que construirse bajo tierra. La profundidad y la anchura de los mismos se determinan por calculo, de acuerdo con las características del terreno, el material de que se construyen y la carga que han de sostener.
Clasificación de cimentaciones:
Estas pueden ser superficiales, profundas y especiales.
Superficiales :
Son superficiales cuando transmiten la carga al suelo por presión bajo su base sin rozamientos laterales de ningún tipo. Un cimiento es superficial cuando su anchura es igual o mayor que su profundidad. engloban las zapatas en general y las losas de cimentación. Los distintos tipos de cimentación superficial dependen de las cargas que sobre ellas recaen.
Puntuales—zapatas aisladas----- aislada, centrada, combinada, medianera, esquina
Lineales—zapatas corridas----- bajo muro, bajo pilares, bajo muro y pilares
Superficiales—losas de cimentación
Ejemplos: zapata corrida de concreto reforzado
cimentación corrida de concreto ciclópeo
zapatas comunes o combinadas
losa de cimentación
Profundas:
Son profundas aquellas que transmiten la carga al suelo por presión bajo su base, pero pueden contar, además, con rozamiento en el fuste.
Ejemplos: cimentación a base de pilotes
Pilas o cajones
Cilindros de cimentación
Generalmente, toda construcción sufre un asentamiento en mayor o menor grado, el cual dependiendo de lo adecuado que haya sido el estudio de la mecánica de suelo y la cimentación escogida. No obstante, un asentamiento no causara mayores problemas cuando el hundimiento sea uniforme y se hayan tomado las debidas precauciones para ello. Sin embargo, en las cimentaciones aisladas y en las corridas, con frecuencia aparecen hundimientos diferenciales más pronunciados en el centro de la construcción. Esto se debe principalmente a la presencia de los bulbos de presión y a la costumbre generalizada de mandar mayores cargas en la parte central de la edificación.
Por lo anterior, resulta más conveniente cargar el edificio en los extremos que en el centro y diseñar la cimentación de tal manera que esta permanezca muy bien ligada entre sí,
Procurando siempre que los ejes de cimentación se encuentren suficientemente alejados, con lo cual se evitara que los bulbos de presión se encimen unos con otros y provoquen sobre fatigas en el suelo.
Si el peso de la construcción hace que las zapatas empiecen a juntarse, es mejor optar por la cimentación corrida o losa de cimentación.
Cuando el peso de un edificio es muy grande, al grado que el terreno es ya incapaz de soportarlo, será entonces necesario recurrir a los pilotes, pilas o cajones, para transmitir la carga a otros estratos más profundos y resistentes del suelo, lo cual se logra con la fricción a lo largo del pilote (pilotes de fricción), o bien con pilotes que transmitan la carga a un estrato o manto con mayor capacidad soportante (pilotes de punta apoyados en capa resistente.
Cimentaciones superficiales
Los cimientos superficiales son aquellos que descansan en las capas superficiales del suelo, las cuales son capaces de soportar la carga que recibe de la construcción por medio de la ampliación de base.
El material mas empleado en la construcción de cimientos superficiales es la piedra (básicamente tratándose de construcciones ligeras), en cualquiera de sus variedades siempre y cuando esta sea resistente, maciza y sin poros. Sin embargo, el concreto armado es un extraordinario material de construcción y siempre resulta más recomendable.
Cimiento ciclópeo:
En terrenos cohesivos donde la zanja pueda hacerse con parámetros verticales y sin desprendimientos de tierra, el cimiento de concreto ciclópeo es sencillo y económico.
El procedimiento para su construcción consiste en ir vaciando dentro de la zanja piedras de diferentes tamaños al tiempo que se vierte la mezcla de concreto en proporción 1:3:5, procurando mezclar perfectamente el concreto con las piedras, de tal forma que se evite la continuidad en sus juntas.
Cimientos de concreto armado:
Los cimientos de concreto armado se utilizan en todos los terrenos pues aunque el concreto es un material pesado, presenta la ventaja de que en su calculo se obtienen, proporcionalmente, secciones relativamente pequeñas si se les compara con las obtenidas en los cimientos de piedra.
Cimentaciones corridas:
Es un tipo de cimiento de hormigón o de hormigón armado que se desarrolla linealmente a una profundidad y con una anchura que depende del tipo de suelo. Se utiliza primordialmente para transmitir adecuadamente cargas proporcionadas por estructuras de muros portantes. Se usa también para cimentar muros de cerca, muros de contención por gravedad, para cerramientos de elevado peso, etc. Las cimentaciones corridas no son recomendables cuando el suelo es muy blando.
Esfuerzos de terreno (qs)
Para esfuerzos de terreno menores a 1 kg/cm2 : se estimara un peso propio del cimiento corrido en el orden de 10% de la descarga.
Para esfuerzos de terreno mayores a 1 kg/cm2 pero menor a 2 kg/cm2 : se estimara un peso propio de cimiento corrido en el orden del 8% de la descarga.
Para esfuerzos de terreno mayores a 2 kg/cm2 : se estimara un peso propio de cimiento corrido en el orden de un 6% de la descarga.
Es importante que los cimientos sean concéntricos con los muros que soportan, con esto se evita sobrecargar uno de los bordes a resultas de la excentricidad producida. Cuando un muro tenga adosado un pilar o un contrafuerte, el cimiento debe ensancharse al llegar al mismo con un vuelo por lo menos igual al correspondiente del muro.
Esta formada por concreto ciclópeo, el cual es 40% piedra bola y el 60% de concreto. Este tipo de cimentación es comúnmente utilizado en casas habitación y es la que recibe la carga de la súper-estructura transmitiéndola al terreno.
DETALLE 1:
contracimiento de concreto armado reforzado con 4 varillas #3 y estribos del #2 espaciados a 4 cms, amarrados con alambre recocido calibre #8.
Relleno con grava cementado, suelo cemento, tepetate a piso. Mada en sepas o capas de 20 cms de espesor con sistema de riego a mano.
Concreto ciclópeo: 40% de piedra brasa y 60% de proporción 1: 5:2.
RECOMENDACIONES: se deberá mojar la piedra brasa para que no absorba la humedad del mortero, de la misma forma debe de humedecerse el fondo de la excavación evitando que se formen charcos.
Cuando la profundidad de la cimentación corrida es mas de 1 m se recomienda utilizar otro tipo de cimentación. El ancho mínimo de esta cimentación suele ser de 50 cm, ya que es muy difícil para el trabajador excavar un ancho menor, y se recomienda que a mayor profundidad este sea más ancho.
Cimentación por zapatas:
En general son de planta cuadrada, pero en la proximidad de los lindes suelen hacerse rectangulares o circulares cuando los útiles de excavación dejan los pozos de esta forma. Se hacen de hormigón armado para que sean capaces de distribuir fuertes cargas en una superficie importante. Esta solución será satisfactoria mientras las zapatas no se junten demasiado; de ocurrir esto será mejor la cimentación corrida. Esta formada por concreto armado, esto quiere decir que esta conformada por concreto y acero, el cual debe ir armado según los cálculos de las cargas que reciba dicha cimentación. Este tipo de cimentación se utiliza en obras grandes en las cuales debido al área de construcción y al terreno, no se pueden utilizar las cimentaciones corridas.
Las zapatas pueden ser de hormigón en masa o armado con planta cuadrada o rectangular como cimentación de soportes verticales pertenecientes a estructuras de edificación, sobre suelos homogéneos de estratigrafía sensiblemente horizontal.
Las zapatas aisladas para la cimentación de cada soporte en general serán centradas con el mismo, salvo las situadas en linderos y medianeras, serán de hormigón armado para firmes superficiales o en masa para firmes algo más profundos.
De planta cuadrada como una opción general. De planta rectangular, cuando las cuadradas equivalentes queden muy próximas, o para regularizar los vuelos en los casos de soportes muy alargados o de pantallas.
Como nota importante hay que decir que se independizaran las cimentaciones y las estructuras que esten situados en terrenos que presenten discontinuidades o cambios sustanciales de su naturaleza, de forma que las distintas partes del edificio queden cimentadas en terrenos homogéneos. Por lo que el plano de apoyo de la cimentación será horizontal o ligeramente escalonado suavizando los desniveles bruscos de la edificación.
La profundidad del plano de apoyo o elección del firme, se fijara en función de las determinaciones del informe geotécnico, teniendo en cuenta que el terreno que queda por debajo de la cimentación no quede alterado, pero antes para saber que tipo de cimentación vamos a utilizar tenemos que conocer el tipo de terreno según el informe geotécnico.
DETALLE 2.
Zapatas aisladas.
Es aquella zapata en la que descansa o recae un solo pilar. Encargada de transmitir a través de su superficie de cimentación las cargas al terreno.
Una variante de la zapata aislada aparece en edificios con junta de dilatación y en este caso se denomina “zapata ajo pilar en junta de diapasón”.
La zapata no necesita junta pues al estar empotrada en el terreno no se ve afectada por los cambios térmicos, aunque en las estructuras si que es normal además de aconsejable poner una junta cada 30 mts aproximadamente, en estos casos la zapata se calcula como si sobre ella solo recayese un único pilar.
Importante es saber que además del peso del edificio y las sobrecargas, hay que tener también en cuenta el peso de las tierras que descansan sobre sus vuelos.
Zapata aislada cuadrada.
La zapata aislada comúnmente se utiliza para transportar la carga concentrada de una columna
cuya función principal consiste en aumentar el área de apoyo en ambas direcciones.
En general, su construcción se aconseja cuando la carga de la columna es aproximadamente 75% mas baja que la capacidad de carga admisible del suelo. Se recomienda que la zapata aislada deberá emplearse cuando el suelo tenga una capacidad de carga admisible no menor de 10000 kg/m2, con el fin de que sus lados no resulten exageradamente grandes.
Él calculo de estas zapatas se basa en los esfuerzos críticos a que se encuentran sometidas, pero su diseño lo determinan el esfuerzo cortante de penetración, la compresión de la columna sobre la zapata, el esfuerzo de flexión producido por la presión ascendente del suelo contra la propia zapata, los esfuerzos del concreto en el interior de la zapata, así como el deslizamiento o falta de adherencia del acero con el concreto.
Zapata aislada rectangular.
Las zapatas aisladas rectangulares son prácticamente iguales a las cuadradas; ambas trabajan y se calculan en forma similar y se recomiendan en aquellos casos donde los ejes entre columnas se encuentran limitados o demasiado juntos.
Por su forma rectangular presenta dos secciones criticas distintas para calcular por flexión. En zapatas que soporten elementos de concreto, será el plomo vertical tangente a la cara de la columna o pedestal en ambos lados de la zapata.
En zapatas aisladas rectangulares en flexión en dos direcciones, el refuerzo paralelo al lado mayor se distribuirá uniformemente.
3. Zapata aislada descentradas.
Las zapatas aisladas descentradas tienen la particularidad de que las cargas que sobre ellas recaen, lo hacen en forma descentrada, por lo que se producen unos momentos de vuelco que habrá de contrarrestar. Pueden ser de medianeria y de esquina.
Las formas de trabajo se solucionan y realizan como la zapata aislada con la salvedad de la problemática que supone el que se produzcan momentos de vuelo, debido a la excentricidad de las cargas. Algunas de las soluciones para evitar el momento de vuelco seria utilizando una viga centradora o bien vigas o forjados en planta primera. Utilizando viga centradora, esta a través de su trabajo a flexión, tiene la misión de absorber el momento de vuelco de la zapata descentrada. Deberá tener gran inercia y estar fuertemente armada.
Con vigas o forjados en planta primera, para centrar la carga podemos recurrir a esta opción. La viga o forjado deberá dimensionarse o calcularse para la combinación de la flexión propia mas la tracción a la que se ve sometida con el momento de vuelco inducido por la zapata.
Zapatas corridas.
Las zapatas corridas pueden ser bajo muros, o bajo pilares, y se define como la que recibe cargas lineales, en general a través de un muro, que si es de hormigón armado, puede transmitir un momento flector a la cimentación. Son cimentaciones de gran longitud en comparación con su sección transversal. Las zapatas corridas están indicadas cuando:
- se trata de cimentar un elemento continuo
- queremos homogeneizar los asientos de una alineación de pilares y nos sirve para arriostramiento
- queremos reducir el trabajo del terreno
- para puentear defectos y heterogeneidades del terreno
- por la proximidad de las zapatas aisladas, resulta más sencillo realizar una zapata corrida
Zapata corrida de concreto armado para apoyos aislados.
Cuando la cimentación esta diseñada para una estructura formada por apoyos aislados
(columnas) y la resistencia del terreno no tiene gran capacidad de soporte, serán mas adecuada
la zapata corrida para unir dos o más columnas. Dichas columnas podrán mandar a la zapata
cargas simétricas, lo que dará como resultado una zapata de ancho uniforme.
Cuando las cargas son asimétricas, la zapata tendrá anchos distintos para transmitir al terreno una fatiga uniforme.
La zapata se soluciona dándole una forma trapezoidal, pero presenta dificultad en sus armados lo que hace que no resulte practica desde el punto de vista constructivo.
El cimiento se debe construir mas fácilmente calculando la zapata como aislada, con su área correspondiente para cada apoyo, uniendo ambas zapatas con la contratrabe. Esta solución presenta la ventaja de tener únicamente dos medidas en su armado principal.
La contratrabe juega un papel importante en las zapatas corridas, pues de no emplearla seria necesario recurrir a un espesor muy grande en la placa o losa de la zapata para evitar la falla por flexión o por cortante producida por la reacción del terreno. Estas contratrabes le dan rigidez a la zapata y soportan, además, los esfuerzos de flexión producidos por la reacción del terreno.
Losa de cimentación:
Consiste en soportar todo el edificio sobre una losa de hormigón armado, extendida a una superficie tal que tomando la carga total que transmite el edificio y dividiéndola por ella no solicite al suelo bajo un esfuerzo mayor que el de su capacidad portante admisible. Para edificios pequeños el espesor de losa esta entre 15 y 22.5 cm; y para edificios mayores se usan espesores de 22.5 a 37.5 cms.
Cuando son insuficientes otros tipos de cimentación o se prevean asientos diferenciales en el terreno, aplicamos la cimentación por losas. En general, cuando la superficie de cimentación mediante zapatas aisladas o corridas es superior al 50% de la superficie total del solar, es conveniente el estudio de cimentación por placas o losas. También es frecuente su utilización cuando la tensión admisible del terreno es menor de 0.8 kg/cm2.
Una losa de cimentación es entonces un elemento estructural de hormigón armado cuyas dimensiones en planta son muy elevadas; define un plano normal a la dirección de soportes.
Cimentación flotante:
Cuando la capacidad portante del suelo es muy pequeña y el peso del edificio importante, puede suceder que el solar de que disponemos no tenga superficie como para albergar una losa que distribuya la carga; en tal caso es posible construir un cimiento que flote sobre el suelo.
Cimentaciones profundas
Las cimentaciones profundas se encargan de transmitir las cargas que reciben de una construcción a mantos resistentes más profundos; son profundas aquellas que transmiten la carga al suelo por presión bajo su base, pero pueden contar, además, con rozamiento en el fuste; las clasificamos en:
Pilotes.
Cilindros.
Cajones.
Cimentación por pilotes:
En ocasiones, cuando comenzamos a realizar la excavación para la ejecución de obra, podemos encontrarnos diversas dificultades para encontrar el estrato resistente o firme donde queremos cimentar. O simplemente se nos presenta la necesidad de apoyar una carga aislada sobre un terreno sin firme, o difícilmente accesible por métodos habituales.
Los cimientos, a fin de distribuir la carga, pueden extenderse horizontalmente, pero también pueden desarrollarse verticalmente hasta alcanzar estratos más bajos capaces de soportarla. En estos casos se recurre a la solución de cimentación profunda, que se constituye por medio de muros verticales profundos de hormigón, los muros pantalla o bien a base de pilares hincados o perforados en el terreno, denominados pilotes.
Un pilote es un soporte, normalmente de hormigón armado, de una gran longitud en relación a su sección transversal, que puede hincarse o construirse “in situ” en una cavidad abierta en el terreno. Los pilotes son columnas esbeltas con capacidad para soportar y transmitir cargas a estratos más resistentes o de roca, o por rozamiento en el fuste. Por lo general, su diámetro o lado no es mayor de 60 cms. Constituye un sistema constructivo de cimentación profunda al que denominaremos cimentación por pilotaje. Los pilotes son necesarios cuando la capa superficial o suelo portante no es capaz de resistir el peso del edificio o bien cuando esta se encuentra a gran profundidad; también cuando el terreno esta lleno de agua y ello dificulta los trabajos de excavación. Con la construcción de pilotes se evitan edificaciones costosas y volúmenes grandes de cimentación.
Los pilotes pueden alcanzar profundidades superiores a los 40 mts teniendo una sección transversal de 2-4 mts, pudiendo gravitar sobre ellos una carga de 2000 t. Los pilotes deben recibir fuerzas longitudinales de compresión, ya que las cargas por flexión producen deformaciones mayores con alto grado de peligrosidad; sin embargo, en ocasiones deberan tomarse en cuenta otras solicitaciones de cargas horizontales como viento y sismo. Una excentricidad por pequeña que sea provoca cambios importantes en los esfuerzos de los pilotes. La capacidad de estos para soportar las cargas dependerá de la resistencia desarrollada entre ellos y el subsuelo.
De acuerdo con su función de trabajo, los tipos de pilotes son:
Pilotes apoyados en manto resistente.
Pilotes trabajando por fricción del fuste con el suelo.
Una combinación de ambos, es decir, por apoyo directo en la capa resistente y por rozamiento sobre una parte de su longitud empotrada.
Los pilotes deberán agruparse abajo y alrededor de cada elemento de carga, procurando obtener siempre un apoyo que sea lo más rígido posible. No se aconseja apoyar el elemento de carga solo sobre uno de los pilotes, ya que durante su hincado podrá quedar desplazado de su posición original y ocasionar una flexión por excentricidad de la carga.
Asimismo, los pilotes se pueden distribuir en una zapata cuadrada, rectangular, circular, hexagonal, etc., de tal manera que coincida la resultante de cargas con la de los pilotes, permitiendo que entre ellos se encuentre una separación no menor de 1.25 m o tres diámetros entre sus centros.
La capacidad de carga de un pilote se reduce cuando este trabaja en un conjunto de pilotes; además, esta sujeto a cargas excéntricas y, quizás, a fuerzas de levantamiento que producen deformaciones indeseables. Este es un detalle que siempre debe tenerse presente, así como la separacion entre los pilotes para evitar la influencia de tensiones entre ellos.
Los bulbos de presion se sobreponen cuando los pilotes se colocan muy juntos, causando fatigas excesivas y hundimientos en el terreno
Los pilotes pueden tener gran diversidad de formas, longitud, union en sus tramos y procedimientos de hincado; asimismo, los hallamos de seccion circular, cuadrada, hexagonal, octagonal, etc.
La perforación que tienen los pilotes a lo largo de sus tramos sirve para saber, con seguridad, si este se conservara o no vertical a la hora del hincado; ademas, el orificio central sirve para colocar un refuerzo de acero capaz de absorber esfuerzos de flexion, tensión y cortante.
Los pilotes que se usan mas son los prefabricados de concreto, los de concreto armado, los de concreto comprimido, los de acero, los presforzados, y en menor proporcion, los de madera.
Todos ellos pueden hincarse desde una profundidad de 3 a 40 m; en caso de requerirse una profundidad mayor, se pueden formar con tramos de 1 m o de mayor longitud que al soldarse quedan como pilotes de una sola pieza.
La capacidad de carga de un pilote depende de muchos factores, como propiedades del suelo, peso del martillo, frecuencia de los golpe, nivel freático, etc, de tal manera que es difícil determinar su capacidad portante si antes no se hace una prueba de carga. Dicha prueba consiste en cargarle al pilote un peso conocido que determine su capacidad y su asentamiento en el suelo.
La eficacia de un pilote depende de:
El rozamiento y la adherencia entre el suelo y el fuste del pilote.
La resistencia por punta, en el caso de transmitir compresiones. Ante posibles esfuerzos de tracción, se puede ensanchar la parte inferior del pilote, de forma que trabaje el suelo superior.
El empleo de cimentaciones mediante pilotaje esta indicado en los siguientes casos:
Cuando la carga transmitida por las estructuras no puede ser distribuida en el terreno de forma uniforme mediante el empleo de sistemas de cimentación directa como zapatas o losas.
Cuando el nivel del firme no puede ser alcanzado de forma sencilla o se encuentra a gran pofundidad.
Cuando los estratos superiores del terreno son poco consistentes hasta cotas profundas, contienen gran cantidad de agua o bien se necesita cimentar por debajo del nivel freático.
Cuando se prevea que los estratos inmediatos a la superficie de cimentación pueden determinar asientos imprevisibles de cierta importancia.
metodo de tragulacion
metodo del triangulo
En este método, los vecores se deben trasladar (sin cambiarle sus propiedades) de tal forma que la "cabeza" del uno se conecte con la "cola" del otro (el orden no interesa, pues la suma es conmutativa). El vector resultante se representa por la "flecha" que une la "cola" que queda libre con la "cabeza" que también está libre (es decir se cierra un triángulo con un "choque de cabezas" . En la figura 1 se ilustra el método.
Si la operación se hace graficamente con el debido cuidado, sólo bastaría medir con una regla el tamaño del vector de color negro utilizando la misma escala que utilizó para dibujar los vectores sumandos (el rojo y el azul). Esa sería la magnitud de la suma. La dirección se podría averiguar midiendo con un transportador el ángulo que forma con una línea horizontal.
Pero no nos basta con saberlo hacer gráficamente. Tendremos que aprenderlo a realizar analíticamente. Para ello se deben utilizar los teoremas del seno y del coseno y si es un triángulo rectángulo se utilizará el teorema de Pitágoras.
GPS
El Sistema de Posicionamiento Global (Global Positioning System, GPS) desarrollado por Estados Unidos, se ha incorporado masivamente a todo tipo de trabajos que necesitan de una precisión exhaustiva a la hora de determinar la posición en que se encuentra un barco, un avión, un coche, un explorador o un iceberg sobre nuestro planeta.
La base de este sistema consiste en un conjunto de 21 satélites que en todo momento están describiendo una órbita en torno a la Tierra. Estos satélites emiten su señal durante las 24 horas del día. La recepción de varias de estas señales es lo que permite al GPS portátil (del tamaño de un transistor de bolsillo), calcular su posición en la Tierra. A mayor número de satélites "visibles" por el aparato, más precisos son los cálculos. Con sucesivas posiciones el receptor puede suministrarnos otros datos derivados, como nuestra posición exacta y relativa, la velocidadde navegación o desplazamiento, cómo debemos cambiar el rumbo para llegar a nuestro destino y otras opciones.
Existe una redsimilar desarrollada por los rusos (GLONASS) que mantiene muchas similitudes con el sistema americano tanto en su fundamento como en su utilización, pero que no da cobertura en toda la Tierra. Como la red GPS, la GLONASS ofrece dos niveles de servicio, proporcionando a los usuarios civiles una precisión en la posición horizontal de 60 metros y una precisión en la posición vertical de 75 metros (así pues, el error en un mapa a escala 1:50.000 puede ser de 1 ó 1’5 mm).
Las nuevas tecnologías de posicionamiento global desarrolladas por los centros de investigación en materia de defensa se han ido extendiendo al resto de la sociedad (...) pero a pesar de que esto es así, lo cierto es que el Departamento de Defensa estadounidense sigue manteniendo un cierto control sobre las posibilidades de posicionamiento global, al introducir un error intencionado en la señal suministrada por la constelación de satélites.
Este hecho hace que, para determinadas aplicaciones que requieran mucha exactitud, sean necesarias las correcciones de estos errores presentes en las lecturas realizadas por los GPS portátiles; dichas correcciones se hacen con el GPS Diferencial (DGPS).
Con la existencia de las dos redes de satélites, y para mejorar la precisión de la localización obtenida, en 1988 comenzó un proyecto para analizar la posibilidad de utilizar ambos sistemas conjuntamente para uso civil. Cada uno de los sistemas utiliza distintos estándares de referencia de tiempo y espacio, pero la conversión entre ambos no es excesivamente complicada.
En el campo civil existe un amplio abanico de usos: la navegación aérea y marítima, control de flotas de camiones, medir la deriva de los continentes, utilizar el sistema para realizar senderismo por la montaña, etc.
2. Como funciona un receptor GPS
Los receptores GPS reciben la información precisa de la hora y la posición del satélite. Exactamente, recibe dos tipos de datos, los datos del Almanaque, que consiste en una serie de parámetros generales sobre la ubicación y la operatividad de cada satélite con relación al resto de satélites de la red, esta información puede ser recibida desde cualquier satélite, y una vez el receptor GPS tiene la información del último Almanaque recibido y la hora precisa, sabe donde buscar los satélites en el espacio; La otra serie de datos, también conocida como Efemérides, hace referencia a los datos precisos, únicamente, del satélite que está siendo captado por el receptor GPS, son parámetros orbitales exclusivos de ese satélite y se utilizan para calcular la distancia exacta del receptor al satélite. Cuando el receptor ha captado la señal de, al menos, tres satélites calcula su propia posición en la Tierra mediante la triangulación de la posición de los satélites captados,
Modulo GPS ACE II de 8 canales para integración de sistemas
Tecnología TRIMBLE ASIC de sexta generación que proporciona inmejorables prestaciones. El nuevo receptor GPS en miniatura ACE II para integración de sistemas incorpora la más moderna y poderosa arquitectura de 8 canales en el formato más popular del mercado (8.25cm x 4.65cm x 1.45 cm).
Diseñado específicamente para aquellas aplicaciones que requieran altas prestaciones a bajo costo, él modulo ACE II GPS proporciona fiables datos de posición GPS para navegación, seguimiento, almacenamiento o sincronización, La rápida adicción de las señales GPS y su bajo consumo hacen del modulo ACE II GPS el ideal para aplicaciones móviles o alimentadas mediante baterías. Además él modulo ACE II GPS es el reemplazo directo de la popularísima tarjeta SV6 CM3 permitiendo una actualización a la tecnología de 8 canales rápida y económica.
La flexibilidad y la fácil integración están aseguradas con los dos puertos I/O absolutamente configurables por el usuario y la integración de los tres protocolos de comunicaciones más populares del mercado (TSIP/TAIP/NMEA) de los cuales pueden estar activos dos de ellos de manera simultanea, incluso mientras se reciben correcciones diferenciales RTCM para una precisión de las posiciones de 2 metros.
Trimble ofrece una selección de antenas activas de alta sensibilidad y rechazo al ruidopara el uso con el nuevo modulo ACE II GPS, incluyendo la miniatura con montaje magnético, la de montaje fijo para vehículos o bastones topográficos. En cualquier caso él modulo ACE II GPS informa acerca del estado de la antena para asegurar una operatividad sin problemas.
Posicionamiento con GPS
Esto significa proporcionar la latitud y longitud del punto en el que nos encontramos sobre la superficie terrestre. Por tanto, la mayoría de receptores proporcionan los valores de estas coordenadas en unidades de grados (°) y minutos ('). Tanto la latitud como la longitud son ángulos y por tanto deben medirse con respecto a un 0° de referencia bien definido.
Latitud: Hemisferios Norte y Sur
La latitud se mide con respecto al Ecuador (latitud 0°). Si un punto determinado se encuentra en el hemisferio norte (sur), su coordenada de latitud irá acompañada de la letra N (S). Otro tipo de nomenclatura refiere latitudes norte con números positivos y latitudes sur con números negativos.
Longitud: Este, Oeste
Por razones históricas, la longitud se mide relativa al meridiano de Greenwich. Si medimos un ángulo al este (oeste) del meridiano de Greenwich escribimos la letra E (W) acompañando al número que da la longitud. Algunas veces se utilizan números negativos. Por ejemplo, los siguientes valores de longitud son equivalentes: W 90°; E 270°; and -90°.
Hoja de Trabajo: "Viendo" Satélites
En el Experimento de Cartografiado Global hablaremos de la visibilidad de un satélite. Con esta terminología no queremos decir que se pueda ver el satélite si levantamos nuestra mirada al cielo. Utilizamos los términos "visibilidad" y "ver" en el sentido de que su visión no está obstruida. Por ejemplo, en cuanto un satélite se "pone" en el horizonte ya no es visible y para poder "verlo" debemos esperar a que salga de nuevo por el horizonte.
No sólo el horizonte puede obstruir la visión de un satélite sino que también edificios, árboles y demás obstáculos pueden interponerse entre un satélite y un receptor determinados. Debéis, por tanto, intentar tener siempre una buena visibilidad del cielo cuando utilicéis receptores GPS.
La base de este sistema consiste en un conjunto de 21 satélites que en todo momento están describiendo una órbita en torno a la Tierra. Estos satélites emiten su señal durante las 24 horas del día. La recepción de varias de estas señales es lo que permite al GPS portátil (del tamaño de un transistor de bolsillo), calcular su posición en la Tierra. A mayor número de satélites "visibles" por el aparato, más precisos son los cálculos. Con sucesivas posiciones el receptor puede suministrarnos otros datos derivados, como nuestra posición exacta y relativa, la velocidadde navegación o desplazamiento, cómo debemos cambiar el rumbo para llegar a nuestro destino y otras opciones.
Existe una redsimilar desarrollada por los rusos (GLONASS) que mantiene muchas similitudes con el sistema americano tanto en su fundamento como en su utilización, pero que no da cobertura en toda la Tierra. Como la red GPS, la GLONASS ofrece dos niveles de servicio, proporcionando a los usuarios civiles una precisión en la posición horizontal de 60 metros y una precisión en la posición vertical de 75 metros (así pues, el error en un mapa a escala 1:50.000 puede ser de 1 ó 1’5 mm).
Las nuevas tecnologías de posicionamiento global desarrolladas por los centros de investigación en materia de defensa se han ido extendiendo al resto de la sociedad (...) pero a pesar de que esto es así, lo cierto es que el Departamento de Defensa estadounidense sigue manteniendo un cierto control sobre las posibilidades de posicionamiento global, al introducir un error intencionado en la señal suministrada por la constelación de satélites.
Este hecho hace que, para determinadas aplicaciones que requieran mucha exactitud, sean necesarias las correcciones de estos errores presentes en las lecturas realizadas por los GPS portátiles; dichas correcciones se hacen con el GPS Diferencial (DGPS).
Con la existencia de las dos redes de satélites, y para mejorar la precisión de la localización obtenida, en 1988 comenzó un proyecto para analizar la posibilidad de utilizar ambos sistemas conjuntamente para uso civil. Cada uno de los sistemas utiliza distintos estándares de referencia de tiempo y espacio, pero la conversión entre ambos no es excesivamente complicada.
En el campo civil existe un amplio abanico de usos: la navegación aérea y marítima, control de flotas de camiones, medir la deriva de los continentes, utilizar el sistema para realizar senderismo por la montaña, etc.
2. Como funciona un receptor GPS
Los receptores GPS reciben la información precisa de la hora y la posición del satélite. Exactamente, recibe dos tipos de datos, los datos del Almanaque, que consiste en una serie de parámetros generales sobre la ubicación y la operatividad de cada satélite con relación al resto de satélites de la red, esta información puede ser recibida desde cualquier satélite, y una vez el receptor GPS tiene la información del último Almanaque recibido y la hora precisa, sabe donde buscar los satélites en el espacio; La otra serie de datos, también conocida como Efemérides, hace referencia a los datos precisos, únicamente, del satélite que está siendo captado por el receptor GPS, son parámetros orbitales exclusivos de ese satélite y se utilizan para calcular la distancia exacta del receptor al satélite. Cuando el receptor ha captado la señal de, al menos, tres satélites calcula su propia posición en la Tierra mediante la triangulación de la posición de los satélites captados,
Modulo GPS ACE II de 8 canales para integración de sistemas
Tecnología TRIMBLE ASIC de sexta generación que proporciona inmejorables prestaciones. El nuevo receptor GPS en miniatura ACE II para integración de sistemas incorpora la más moderna y poderosa arquitectura de 8 canales en el formato más popular del mercado (8.25cm x 4.65cm x 1.45 cm).
Diseñado específicamente para aquellas aplicaciones que requieran altas prestaciones a bajo costo, él modulo ACE II GPS proporciona fiables datos de posición GPS para navegación, seguimiento, almacenamiento o sincronización, La rápida adicción de las señales GPS y su bajo consumo hacen del modulo ACE II GPS el ideal para aplicaciones móviles o alimentadas mediante baterías. Además él modulo ACE II GPS es el reemplazo directo de la popularísima tarjeta SV6 CM3 permitiendo una actualización a la tecnología de 8 canales rápida y económica.
La flexibilidad y la fácil integración están aseguradas con los dos puertos I/O absolutamente configurables por el usuario y la integración de los tres protocolos de comunicaciones más populares del mercado (TSIP/TAIP/NMEA) de los cuales pueden estar activos dos de ellos de manera simultanea, incluso mientras se reciben correcciones diferenciales RTCM para una precisión de las posiciones de 2 metros.
Trimble ofrece una selección de antenas activas de alta sensibilidad y rechazo al ruidopara el uso con el nuevo modulo ACE II GPS, incluyendo la miniatura con montaje magnético, la de montaje fijo para vehículos o bastones topográficos. En cualquier caso él modulo ACE II GPS informa acerca del estado de la antena para asegurar una operatividad sin problemas.
Posicionamiento con GPS
Esto significa proporcionar la latitud y longitud del punto en el que nos encontramos sobre la superficie terrestre. Por tanto, la mayoría de receptores proporcionan los valores de estas coordenadas en unidades de grados (°) y minutos ('). Tanto la latitud como la longitud son ángulos y por tanto deben medirse con respecto a un 0° de referencia bien definido.
Latitud: Hemisferios Norte y Sur
La latitud se mide con respecto al Ecuador (latitud 0°). Si un punto determinado se encuentra en el hemisferio norte (sur), su coordenada de latitud irá acompañada de la letra N (S). Otro tipo de nomenclatura refiere latitudes norte con números positivos y latitudes sur con números negativos.
Longitud: Este, Oeste
Por razones históricas, la longitud se mide relativa al meridiano de Greenwich. Si medimos un ángulo al este (oeste) del meridiano de Greenwich escribimos la letra E (W) acompañando al número que da la longitud. Algunas veces se utilizan números negativos. Por ejemplo, los siguientes valores de longitud son equivalentes: W 90°; E 270°; and -90°.
Hoja de Trabajo: "Viendo" Satélites
En el Experimento de Cartografiado Global hablaremos de la visibilidad de un satélite. Con esta terminología no queremos decir que se pueda ver el satélite si levantamos nuestra mirada al cielo. Utilizamos los términos "visibilidad" y "ver" en el sentido de que su visión no está obstruida. Por ejemplo, en cuanto un satélite se "pone" en el horizonte ya no es visible y para poder "verlo" debemos esperar a que salga de nuevo por el horizonte.
No sólo el horizonte puede obstruir la visión de un satélite sino que también edificios, árboles y demás obstáculos pueden interponerse entre un satélite y un receptor determinados. Debéis, por tanto, intentar tener siempre una buena visibilidad del cielo cuando utilicéis receptores GPS.
equipos q se utilizan en topografia
EQUIPO TOPOGRÁFICO:
podemos clasificar al equipo en tres categorías:
para medir ángulos.- aquí se encuentran la brújula, el transito y el teodolito
para medir distancias.- aquí se encuentra la cinta métrica, el odómetro, y el distanciometro
para medir pendiente.- aquí se encuentran el nivel de mano, de riel, el fijo, basculante, automático
es común que se piense que un topógrafo resuelve sus necesidades con triángulos, ya que puede dividir cualquier polígono en triángulos y a partir de ahí obtener por ejemplo el área, esto con la ayuda de senos, cosenos y el teorema de Pitagoras, para definir estos triángulos utiliza el teodolito, y es sabido que conociendo 3 datos de un triángulo sabemos todo de él (por ejem 2 ángulos y una distancia, 3 distancias, etc. etc.), esta información es posteriormente procesada para obtener coordenadas y poder dibujar por ejemplo en autocad.
TRANSITO:
Instrumento topográfico para medir ángulos verticales y horizontales, con una precisión de 1 minuto (1´ ) o 20 segundos (20" ), los círculos de metal se leen con lupa, los modelos viejos tienen cuatro tornillos para nivelación, actualmente se siguen fabricando pero con solo tres tornillos nivelantes.
Para diferencia un transito de un minuto y uno de 20 segundos, en los nonios los de 1 minuto tienen en el extremo el numero 30 y los de 20 segundos traen el numero 20.
TEODOLITO ÓPTICO:
es la evolución de el tránsito mecánico, en este caso, los círculos son de vidrio, y traen una serie de prismas para observar en un ocular adicional. La lectura del ángulo vertical y horizontal la precisión va desde 1 minuto hasta una décima de segundo.
TEODOLITO ELECTRÓNICO:
es la versión del teodolito óptico, con la incorporación de electrónica para hacer las lecturas del circulo vertical y horizontal, desplegando los ángulos en una pantalla eliminando errores de apreciación, es mas simple en su uso, y por requerir menos piezas es mas simple su fabricación y en algunos casos su calibración.
Las principales características que se deben observar para comparar estos equipos hay que tener en cuenta: la precisión, el numero de aumentos en la lente del objetivo y si tiene o no compensador electrónico.
DISTANCIOMETRO:
Dispositivo electrónico para medición de distancias, funciona emitiendo un haz luminoso ya sea infrarrojo o láser, este rebota en un prisma o directamente sobre la superficie, y dependiendo de el tiempo que tarda el haz en recorrer la distancia es como determina esta.
En esencia un distanciometro solo puede medir la distancia inclinada, para medir la distancia horizontal y desnivel, algunos tienen un teclado para introducir el ángulo vertical y por senos y cosenos calcular las otras distancias, esto se puede realizar con una simple calculadora científica de igual manera, algunos distaciometros, poseen un puerto para recibir la información directamente de un teodolito electrónico para obtener el ángulo vertical.
Hay varios tipos
Montura en horquilla.- Estos se montan sobre la horquilla del transito o teodolito, el problema de estos es que es mas tardado trabajar, ya que se apunta primero el telescopio, y después el distanciometro
Montura en el telescopio.- Es mas fácil trabajar con estos, ya que solo es necesario apuntar el telescopio ligeramente debajo del prisma para hacer la medición, este tipo de montura es mas especializado, y no todos los distaciometros quedan en todos los teodolitos.
En general ajuste de la puntería, puede resultar un poco engorroso con estos equipos, ya que es muy fácil que se desajuste.
El alcance de estos equipos puede ser de hasta 5,000 metros
También existen distanciometros manuales, estos tienen un alcance de hasta 200 metros, son muy útiles para medir recintos y distancias cortas en general.
Por su funcionamiento existen de dos tipos:
por ultrasonido: son los mas económicos y su alcance no llega a los 50 metros, se debe tener cuidado con estos, ya que si la superficie no esta perpendicular al equipo, o es irregular, puede arrojar resultados incorrectos o no medir en absoluto, hay modelos mas sofisticados que tienen una mira láser, por lo que será importante no confundirlos con los siguientes.
Por láser: son muy precisos y confiables, su alcance máximo es de 200 metros, aun cuando en exteriores y distancias de mas de 50 metros se recomienda contar con mira, ya que a esas distancias o con la luz del día, resulta difícil saber donde esta apuntando el láser
ESTACIÓN SEMITOTAL:
En este aparato se integra el teodolito óptico y el distanciometro, ofreciendo la misma linea de vista para el teodolito y el distanciometro, se trabaja mas rápido con este equipo, ya que se apunta al centro del prisma, a diferencia de un teodolito con distanciometro, en donde en algunos casos se apunta primero el teodolito y luego el distanciometro, o se apunta debajo del prisma, actualmente resulta mas caro comprar el teodolito y el distanciometro por separado.
En la estación semitotal, como en el teodolito ÓPTICO, las lecturas son analógicas, por lo que el uso de la libreta electrónica, no representa gran ventaja, se recomienda mejor una estación total.
Estos equipos siguen siendo muy útiles en control de obra, replanteo y aplicaciones que no requieren uso de calculo de coordenadas, solo ángulos y distancias.
ESTACIÓN TOTAL:
es la integración del teodolito electrónico con un distanciometro.
Las hay con calculo de coordenadas.- Al contar con la lectura de ángulos y distancias, al integrar algunos circuitos mas, la estación puede calcular coordenadas.
Las hay con memoria.- con algunos circuitos mas, podemos almacenar la información de las coordenadas en la memoria del aparto, sin necesidad de apuntarlas en una libreta con lápiz y papel, esto elimina errores de lápiz y agiliza el trabajo, la memoria puede estar integrada a la estacion total o existe un accesorio llamado libreta electronica, que permite integrarle estas funciones a equipos que convencionalmente no tienen memoriao calculo de coordenadas.
Las hay motorizadas.- Agregando dos servomotores, podemos hacer que la estación apunte directamente al prisma, sin ningún operador, esto en teoría representa la ventaja que un levantamiento lo puede hacer una sola persona.
Las hay sin prisma.- Integran tecnología de medición láser, que permite hacer mediciones sin necesidad de un prisma, es decir pueden medir directamente sobre casi cualquier superficie, su alcance esta limitado hasta 300 metros, pero su alcance con prisma puede llegar a los 5,000 metros, es muy útil para lugares de difícil acceso o para mediciones precisas como alineación de maquinas o control de deformaciones etc.
Las principales características que se deben observar para comparar estos equipos hay que tener en cuenta: la precisión, el numero de aumentos en la lente del objetivo, si tiene o no compensador electrónico, alcance de medición de distancia con un prisma y si tiene memoria o no.
Precisión:
es importante a la hora de comparar diferentes equipos, diferenciar entre resolución en pantalla y precisión, pues resulta que la mayoría de las estaciones, despliegan un segundo de resolución en pantalla, pero la precisión certificada puede ser de 3 a 9 segundos, es lo que hace la diferencia entre un modelo y otro de la misma serie, por ejemplo la Set 510 es de 5 segundos y la Set310 es de 3 segundos.
GPS:
Sistema de posicionamiento global (Global Positioning System), hay dos tipos:
NAVEGADORES GPS.
Estos son mas para fines recreativos y aplicaciones que no requieren gran precisión, consta de un dispositivo que cabe en la palma de la mano, tienen la antena integrada, su precisión puede ser de menor a 15 mts, pero si incorpora el sistema WAAS puede ser de menor a 3 mts.
Ademas de proporcionar nuestra posición en el plano horizontal pueden indicar la elevación por medio de la misma señal de los satélites, algunos modelos tienen también barómetro para determinar la altura con la presión atmosférica.
Los modelos que no poseen brújula electrónica, pueden determinar la "dirección de movimiento" (rumbo), es decir es necesario estar en movimiento para que indique correctamente para donde esta el norte.
La señal de los satélites GPS no requiere de ningún pago o renta.
GPS TOPOGRÁFICOS
Estos equipos tienen precisiones desde varios milímetros hasta menos de medio metro.
Existen GPS de una banda (L1) y de dos bandas (L1, L2), la diferencia es que para los GPS de una banda se garantiza la precisión milimetrica para distancias menores a 40km entre antenas, en los GPS de dos bandas es de hasta 300km, si bien se pueden realizar mediciones a distancias mayores, ya no se garantiza la precisión de las lecturas.
Los GPS topográficos requieren dos antenas, ya sea que el usuario tenga las dos, o que solo tenga una y compre los datos a una institución como el INEGI o Omnistar (DGPS). Se dice entonces que se esta trabajando en modo diferencial.
La diferencia en precio de un GPS de una banda contra uno de Dos bandas puede ser muy grande, y lo es mas cuando los GPS de dos bandas incorporan la función RTK (Real Time Kinematic). La forma de trabajar con equipos que no incorporan la función RTK es: trasladar los equipos a campo, se hacen las lecturas, pero es solo hasta que se regresa a gabinete que se obtienen las mediciones, con un sistema RTK, los datos se obtienen directamente en campo y el alto precio de estos equipos es por que incorporan una computadora, y un sistema de radio comunicación entre las dos antenas.
El GPS no reemplaza a la estación total, en la mayoría de los casos se complementan. Es en levantamientos de gran extensión donde el GPS resulta particularmente practico, ya que no requiere una línea de vista entre una antena y otra, además de tener el GPS la gran limitante de trabajar solo en espacios con vista al cielo, siendo un poco problemático incluso cuando la vegetación es alta y densa, pero por ejemplo una selva o bosque se abre un claro de unos 5 metros y se hace la medición con la antena, en lugar de abrir una brecha para tener visual entre la estación total y el prisma. Así mismo es común hacer el levantamiento de dos puntos con GPS (línea de control) y posteriormente usar la estación y en lugar de introducir coordenadas arbitrarias introducimos coordenadas geográficas, y todo lo que se levante con la estación estará georeferenciado.
Otro aspecto importante es hacer la diferenciación de un sistema de navegación y un sistema de localización o rastreo, el primero permite que la persona que tiene el dispositivo GPS sepa donde esta y para donde ir, para que una tercera persona lo sepa es otra historia eso ya es un sistema de localización, estos sistemas si requieren una renta o cuota mensual, ya que aun cuando usan un GPS, este solo recibe la señal de los satélites, se necesita otro dispositivo tipo celular para transmitir la posición a un sistema conectado a Internet para que alguien pueda acceder una pagina y saber donde esta el dispositivo.
GPS(navstar).- desarrollado por la fuerza aérea norte americana con fines militares, pero liberada para uso publico
WAAS.- Wide Area Augmentation System.- sistema para mejorar la precisión del sistema GPS, funciona solo para Estados Unidos, Alaska, Canadá y ahora tambien en México.
EGNOS.- El equivalente del sistema waas, pero solo para Europa.
SBAS.- A los sistemas como WAAS y Egnos se conocen somo sistemas SBAS
GLONASS.- Sistema militar de satélites Ruso.
GALILEO.- Sistema de satélites de la comunidad Europea para intereses no militares o de iniciativa privada (entra en operación hasta 2010)
OCULAR ACODADO:
Este es un accesorio para teodolitos y estaciones.
Cuando uno esta muy cerca de una estructura muy alta, requerimos apuntar el telescopio hacia arriba para poder ver la parte mas alta de la estructura, es común que ya no sea tan fácil poner el ojo en el ocular por como es el equipo, existe un accesorio que nos permite ver incluso al zenit, este es el ocular acodado, los hay muy sencillos, que puede ser simplemente un pequeño prisma, también hay otros que requieren que se retire el ocular y posteriormente poner esta extensión que junto con el prisma nos permite tener una excelente visual.
El los teodolitos ópticos (vs electrónicos) se requieren dos oculares, uno para ver el objeto y otro para hacer las lecturas del ángulo, en las estaciones totales y teodolitos electrónicos, solo se requiere uno.
NIVELES:
Un nivel es un instrumento que nos representa una referencia con respecto a un plano horizontal.
Este aparato ayuda a determinar la diferencia de elevación entre dos puntos con la ayuda de un estadal.
El nivel mas sencillo es el nivel de manguera, es una manguera trasparente, se le introduce agua y se levantan ambos extremos, por simple equilibrio, el agua estará al mismo nivel en ambos extremos.
El nivel de mano es un instrumento también sencillo, la referencia de horizontalidad es una burbuja de vidrio o gota, el clisimetro es una versión mejorada del nivel de mano incorporando un transportador metálico permitiendo hacer mediciones de inclinación y no solo desnivel.
El nivel fijo es la versión sofisticada del nivel de mano, este en lugar de sostenerse con la mano se coloca sobre un tripie, la óptica tiene mas aumentos y la gota es mucho mas sensible.
Este nivel presenta una problemática, y es que conforme se opera el aparato hay que estar verificando continuamente y sobretodo cuando se gira, que la gota siga centrada, esto se hace con los 4 tornillos niveladores los cuales se mueven en pares, y siempre manteniendo tensión para que el aparato no se mueva..
Este problema se resolvió con el nivel basculante, que sigue siendo un nivel fijo, pero que tiene un tornillo para ajustar la gota cada que se hace una medición, simplificando mucho el uso de 4 tornillos nivelantes, uno de los niveles mas precisos es un nivel basculante, pero debe mayormente su precisión justamente a su gota y a una placa planoparalela..
Un gran adelanto se logró cuando se introdujo el compensador automático, dando lugar al nivel automático, su funcionamiento esta basado en un péndulo que por gravedad, en estado estable este siempre estará en forma vertical, y con la ayuda de un prisma, este nos dará la referencia horizontal que estamos buscando. Este nivel tiene una burbuja circular (ojo de buey) que puede no estar completamente centrada, pero el compensador automático hace justamente eso, compensar, este adelanto resultó tan provechoso, que se incorporó en los teodolitos mas precisos y en las estaciones totales, aun cuando su funcionamiento puede variar, el principio sigue siendo el mismo.
Por sus ventajas los niveles automáticos son los que mas fácilmente se encuentran en el mercado, dentro de las características que hay que observar al comparar instrumentos es el número de aumentos de la lente que puede ser de 20x hasta 32x, esto representa que tanto aumenta la imagen al ver a través del nivel, si las distancias son cortas (menores a 10 metros) tal vez no resulte algo trascendente, pero al tratar de ver un estadal graduado al milímetro a 100 metros si es importante contar con el nivel con mas aumentos, o si se requiere gran precisión incluso en distancias cortas se recomendaria el de 32 aumentos. Se ve de las especificaciones que el número de aumentos esta ligado con la precisión del equipo, que se expresa en milímetros por kilometro nivelado ida y vuelta, así si por ejemplo un nivel tiene una precisión de ± 1.5 mm/km, significa que en una nivelación de un kilometro ida y vuelta se tiene un error de mas menos un milímetro y medio.
En términos generales se podría decir que el rango de un nivel de 20 aumentos es de 50 mts, 22x.-65mts, 24x.-79mts, 26x.-92mts, 28x.-104mts, 30x.-115mts, 32x.-125mts, pero si usamos un nivel de muchos aumentos a distancias cortas tendremos mayor facilidad para tomar las lecturas en el estadal y eventualmente mas precisión, así si por ejemplo se quiere nivelar una maquinaria, en donde las distancias pueden no superar los 10 mts, se recomendaría usar el nivel de 32 aumentos, para tener la máxima precisión posible.
Si bien el nivel solo sirve para medir desnivel, últimamente se les ha incorporado una graduación en el giro horizontal, permitiendo hacer mediciones de ángulos con una precisión de medio grado, siendo practico en obra para medir o trazar ángulos horizontales que no requieren gran precisión.
Existe un accesorio llamado placa planoparalela o micrómetro este accesorio permite realizar mediciones a la décima de milímetro, si bien se puede colocar en cualquier nivel, se recomienda solo para niveles con 32 aumentos, este accesorio es de gran ayuda para trabajos que requieren mucha precisión., En algunos casos es incluso aconsejable usar estadal inbar para eliminar error por variación en la temperatura y dilatación de los estadales de aluminio.
Los niveles láser fueron y continúan siendo una novedad creyendo alguna personas que son mas precisos, pero la realidad es otra, existen los que solo proyectan una linea en una pared, su nombre correcto es crossliner se usan principalmente en interiores, ya que en exteriores con la luz del sol resulta difícil ver la linea que proyecta en una pared por ejemplo, linea que por cierto tiene entre 1 y 2 milímetros de ancho, así que si precisión. En un kilometro será de 1 centímetro comparando con un nivel óptico, hay también niveles láser que poseen un sensor, este se puede usar en exteriores y a mayores distancias, ya que no depende del ojo humano, si no de un sensor especializado en ver la luz láser, hay equipos de diferentes precios y precisiones, si adquiere un nivel asegurese que este sea de calidad y que este correctamente calibrado, de lo contrario le recomiendo mejor un nivel de manguera.
No todo es malo en los niveles láser, una de sus ventajas es que lo puede usar una sola persona: pone el nivel en un punto céntrico y va a medir directamente en los puntos que requiere, también si tiene varios instaladores (de marcos por ejemplo) trabajando al mismo tiempo, cada uno puede tener un sensor y estar usando la misma referencia al mismo tiempo. También son muy prácticos montados en maquinaria de excavación o aplanado, eliminando la necesidad de detener la maquinaria para poner un estadal y hacer la medición, con un nivel láser el operador de la maquina puede saber instantáneamente si esta por arriba o por abajo del nivel deseado.
Por ultimo están los niveles electrónicos, estos funcionan como los niveles ópticos, y adicionalmente pueden hacer lecturas electrónicamente con estadales con código de barras, esto resulta muy practico, ya que la medición es muy rápida, y se eliminan errores de apreciación o lectura, incluso de dedo, ya que estos tienen memoria para almacenar y procesar los datos, pueden desplegar en pantalla una resolución de décima de milímetro, y medir distancias con una resolución de un centímetro.
Si bien un teodolito o una estación total se puede usar como nivel, las mediciones no serán tan precisas, siendo que el nivel es un instrumento especializado, pero si no requiere gran precisión. Se puede utilizar una estación o un teodolito ajustando el ángulo vertical a 90 grado
podemos clasificar al equipo en tres categorías:
para medir ángulos.- aquí se encuentran la brújula, el transito y el teodolito
para medir distancias.- aquí se encuentra la cinta métrica, el odómetro, y el distanciometro
para medir pendiente.- aquí se encuentran el nivel de mano, de riel, el fijo, basculante, automático
es común que se piense que un topógrafo resuelve sus necesidades con triángulos, ya que puede dividir cualquier polígono en triángulos y a partir de ahí obtener por ejemplo el área, esto con la ayuda de senos, cosenos y el teorema de Pitagoras, para definir estos triángulos utiliza el teodolito, y es sabido que conociendo 3 datos de un triángulo sabemos todo de él (por ejem 2 ángulos y una distancia, 3 distancias, etc. etc.), esta información es posteriormente procesada para obtener coordenadas y poder dibujar por ejemplo en autocad.
TRANSITO:
Instrumento topográfico para medir ángulos verticales y horizontales, con una precisión de 1 minuto (1´ ) o 20 segundos (20" ), los círculos de metal se leen con lupa, los modelos viejos tienen cuatro tornillos para nivelación, actualmente se siguen fabricando pero con solo tres tornillos nivelantes.
Para diferencia un transito de un minuto y uno de 20 segundos, en los nonios los de 1 minuto tienen en el extremo el numero 30 y los de 20 segundos traen el numero 20.
TEODOLITO ÓPTICO:
es la evolución de el tránsito mecánico, en este caso, los círculos son de vidrio, y traen una serie de prismas para observar en un ocular adicional. La lectura del ángulo vertical y horizontal la precisión va desde 1 minuto hasta una décima de segundo.
TEODOLITO ELECTRÓNICO:
es la versión del teodolito óptico, con la incorporación de electrónica para hacer las lecturas del circulo vertical y horizontal, desplegando los ángulos en una pantalla eliminando errores de apreciación, es mas simple en su uso, y por requerir menos piezas es mas simple su fabricación y en algunos casos su calibración.
Las principales características que se deben observar para comparar estos equipos hay que tener en cuenta: la precisión, el numero de aumentos en la lente del objetivo y si tiene o no compensador electrónico.
DISTANCIOMETRO:
Dispositivo electrónico para medición de distancias, funciona emitiendo un haz luminoso ya sea infrarrojo o láser, este rebota en un prisma o directamente sobre la superficie, y dependiendo de el tiempo que tarda el haz en recorrer la distancia es como determina esta.
En esencia un distanciometro solo puede medir la distancia inclinada, para medir la distancia horizontal y desnivel, algunos tienen un teclado para introducir el ángulo vertical y por senos y cosenos calcular las otras distancias, esto se puede realizar con una simple calculadora científica de igual manera, algunos distaciometros, poseen un puerto para recibir la información directamente de un teodolito electrónico para obtener el ángulo vertical.
Hay varios tipos
Montura en horquilla.- Estos se montan sobre la horquilla del transito o teodolito, el problema de estos es que es mas tardado trabajar, ya que se apunta primero el telescopio, y después el distanciometro
Montura en el telescopio.- Es mas fácil trabajar con estos, ya que solo es necesario apuntar el telescopio ligeramente debajo del prisma para hacer la medición, este tipo de montura es mas especializado, y no todos los distaciometros quedan en todos los teodolitos.
En general ajuste de la puntería, puede resultar un poco engorroso con estos equipos, ya que es muy fácil que se desajuste.
El alcance de estos equipos puede ser de hasta 5,000 metros
También existen distanciometros manuales, estos tienen un alcance de hasta 200 metros, son muy útiles para medir recintos y distancias cortas en general.
Por su funcionamiento existen de dos tipos:
por ultrasonido: son los mas económicos y su alcance no llega a los 50 metros, se debe tener cuidado con estos, ya que si la superficie no esta perpendicular al equipo, o es irregular, puede arrojar resultados incorrectos o no medir en absoluto, hay modelos mas sofisticados que tienen una mira láser, por lo que será importante no confundirlos con los siguientes.
Por láser: son muy precisos y confiables, su alcance máximo es de 200 metros, aun cuando en exteriores y distancias de mas de 50 metros se recomienda contar con mira, ya que a esas distancias o con la luz del día, resulta difícil saber donde esta apuntando el láser
ESTACIÓN SEMITOTAL:
En este aparato se integra el teodolito óptico y el distanciometro, ofreciendo la misma linea de vista para el teodolito y el distanciometro, se trabaja mas rápido con este equipo, ya que se apunta al centro del prisma, a diferencia de un teodolito con distanciometro, en donde en algunos casos se apunta primero el teodolito y luego el distanciometro, o se apunta debajo del prisma, actualmente resulta mas caro comprar el teodolito y el distanciometro por separado.
En la estación semitotal, como en el teodolito ÓPTICO, las lecturas son analógicas, por lo que el uso de la libreta electrónica, no representa gran ventaja, se recomienda mejor una estación total.
Estos equipos siguen siendo muy útiles en control de obra, replanteo y aplicaciones que no requieren uso de calculo de coordenadas, solo ángulos y distancias.
ESTACIÓN TOTAL:
es la integración del teodolito electrónico con un distanciometro.
Las hay con calculo de coordenadas.- Al contar con la lectura de ángulos y distancias, al integrar algunos circuitos mas, la estación puede calcular coordenadas.
Las hay con memoria.- con algunos circuitos mas, podemos almacenar la información de las coordenadas en la memoria del aparto, sin necesidad de apuntarlas en una libreta con lápiz y papel, esto elimina errores de lápiz y agiliza el trabajo, la memoria puede estar integrada a la estacion total o existe un accesorio llamado libreta electronica, que permite integrarle estas funciones a equipos que convencionalmente no tienen memoriao calculo de coordenadas.
Las hay motorizadas.- Agregando dos servomotores, podemos hacer que la estación apunte directamente al prisma, sin ningún operador, esto en teoría representa la ventaja que un levantamiento lo puede hacer una sola persona.
Las hay sin prisma.- Integran tecnología de medición láser, que permite hacer mediciones sin necesidad de un prisma, es decir pueden medir directamente sobre casi cualquier superficie, su alcance esta limitado hasta 300 metros, pero su alcance con prisma puede llegar a los 5,000 metros, es muy útil para lugares de difícil acceso o para mediciones precisas como alineación de maquinas o control de deformaciones etc.
Las principales características que se deben observar para comparar estos equipos hay que tener en cuenta: la precisión, el numero de aumentos en la lente del objetivo, si tiene o no compensador electrónico, alcance de medición de distancia con un prisma y si tiene memoria o no.
Precisión:
es importante a la hora de comparar diferentes equipos, diferenciar entre resolución en pantalla y precisión, pues resulta que la mayoría de las estaciones, despliegan un segundo de resolución en pantalla, pero la precisión certificada puede ser de 3 a 9 segundos, es lo que hace la diferencia entre un modelo y otro de la misma serie, por ejemplo la Set 510 es de 5 segundos y la Set310 es de 3 segundos.
GPS:
Sistema de posicionamiento global (Global Positioning System), hay dos tipos:
NAVEGADORES GPS.
Estos son mas para fines recreativos y aplicaciones que no requieren gran precisión, consta de un dispositivo que cabe en la palma de la mano, tienen la antena integrada, su precisión puede ser de menor a 15 mts, pero si incorpora el sistema WAAS puede ser de menor a 3 mts.
Ademas de proporcionar nuestra posición en el plano horizontal pueden indicar la elevación por medio de la misma señal de los satélites, algunos modelos tienen también barómetro para determinar la altura con la presión atmosférica.
Los modelos que no poseen brújula electrónica, pueden determinar la "dirección de movimiento" (rumbo), es decir es necesario estar en movimiento para que indique correctamente para donde esta el norte.
La señal de los satélites GPS no requiere de ningún pago o renta.
GPS TOPOGRÁFICOS
Estos equipos tienen precisiones desde varios milímetros hasta menos de medio metro.
Existen GPS de una banda (L1) y de dos bandas (L1, L2), la diferencia es que para los GPS de una banda se garantiza la precisión milimetrica para distancias menores a 40km entre antenas, en los GPS de dos bandas es de hasta 300km, si bien se pueden realizar mediciones a distancias mayores, ya no se garantiza la precisión de las lecturas.
Los GPS topográficos requieren dos antenas, ya sea que el usuario tenga las dos, o que solo tenga una y compre los datos a una institución como el INEGI o Omnistar (DGPS). Se dice entonces que se esta trabajando en modo diferencial.
La diferencia en precio de un GPS de una banda contra uno de Dos bandas puede ser muy grande, y lo es mas cuando los GPS de dos bandas incorporan la función RTK (Real Time Kinematic). La forma de trabajar con equipos que no incorporan la función RTK es: trasladar los equipos a campo, se hacen las lecturas, pero es solo hasta que se regresa a gabinete que se obtienen las mediciones, con un sistema RTK, los datos se obtienen directamente en campo y el alto precio de estos equipos es por que incorporan una computadora, y un sistema de radio comunicación entre las dos antenas.
El GPS no reemplaza a la estación total, en la mayoría de los casos se complementan. Es en levantamientos de gran extensión donde el GPS resulta particularmente practico, ya que no requiere una línea de vista entre una antena y otra, además de tener el GPS la gran limitante de trabajar solo en espacios con vista al cielo, siendo un poco problemático incluso cuando la vegetación es alta y densa, pero por ejemplo una selva o bosque se abre un claro de unos 5 metros y se hace la medición con la antena, en lugar de abrir una brecha para tener visual entre la estación total y el prisma. Así mismo es común hacer el levantamiento de dos puntos con GPS (línea de control) y posteriormente usar la estación y en lugar de introducir coordenadas arbitrarias introducimos coordenadas geográficas, y todo lo que se levante con la estación estará georeferenciado.
Otro aspecto importante es hacer la diferenciación de un sistema de navegación y un sistema de localización o rastreo, el primero permite que la persona que tiene el dispositivo GPS sepa donde esta y para donde ir, para que una tercera persona lo sepa es otra historia eso ya es un sistema de localización, estos sistemas si requieren una renta o cuota mensual, ya que aun cuando usan un GPS, este solo recibe la señal de los satélites, se necesita otro dispositivo tipo celular para transmitir la posición a un sistema conectado a Internet para que alguien pueda acceder una pagina y saber donde esta el dispositivo.
GPS(navstar).- desarrollado por la fuerza aérea norte americana con fines militares, pero liberada para uso publico
WAAS.- Wide Area Augmentation System.- sistema para mejorar la precisión del sistema GPS, funciona solo para Estados Unidos, Alaska, Canadá y ahora tambien en México.
EGNOS.- El equivalente del sistema waas, pero solo para Europa.
SBAS.- A los sistemas como WAAS y Egnos se conocen somo sistemas SBAS
GLONASS.- Sistema militar de satélites Ruso.
GALILEO.- Sistema de satélites de la comunidad Europea para intereses no militares o de iniciativa privada (entra en operación hasta 2010)
OCULAR ACODADO:
Este es un accesorio para teodolitos y estaciones.
Cuando uno esta muy cerca de una estructura muy alta, requerimos apuntar el telescopio hacia arriba para poder ver la parte mas alta de la estructura, es común que ya no sea tan fácil poner el ojo en el ocular por como es el equipo, existe un accesorio que nos permite ver incluso al zenit, este es el ocular acodado, los hay muy sencillos, que puede ser simplemente un pequeño prisma, también hay otros que requieren que se retire el ocular y posteriormente poner esta extensión que junto con el prisma nos permite tener una excelente visual.
El los teodolitos ópticos (vs electrónicos) se requieren dos oculares, uno para ver el objeto y otro para hacer las lecturas del ángulo, en las estaciones totales y teodolitos electrónicos, solo se requiere uno.
NIVELES:
Un nivel es un instrumento que nos representa una referencia con respecto a un plano horizontal.
Este aparato ayuda a determinar la diferencia de elevación entre dos puntos con la ayuda de un estadal.
El nivel mas sencillo es el nivel de manguera, es una manguera trasparente, se le introduce agua y se levantan ambos extremos, por simple equilibrio, el agua estará al mismo nivel en ambos extremos.
El nivel de mano es un instrumento también sencillo, la referencia de horizontalidad es una burbuja de vidrio o gota, el clisimetro es una versión mejorada del nivel de mano incorporando un transportador metálico permitiendo hacer mediciones de inclinación y no solo desnivel.
El nivel fijo es la versión sofisticada del nivel de mano, este en lugar de sostenerse con la mano se coloca sobre un tripie, la óptica tiene mas aumentos y la gota es mucho mas sensible.
Este nivel presenta una problemática, y es que conforme se opera el aparato hay que estar verificando continuamente y sobretodo cuando se gira, que la gota siga centrada, esto se hace con los 4 tornillos niveladores los cuales se mueven en pares, y siempre manteniendo tensión para que el aparato no se mueva..
Este problema se resolvió con el nivel basculante, que sigue siendo un nivel fijo, pero que tiene un tornillo para ajustar la gota cada que se hace una medición, simplificando mucho el uso de 4 tornillos nivelantes, uno de los niveles mas precisos es un nivel basculante, pero debe mayormente su precisión justamente a su gota y a una placa planoparalela..
Un gran adelanto se logró cuando se introdujo el compensador automático, dando lugar al nivel automático, su funcionamiento esta basado en un péndulo que por gravedad, en estado estable este siempre estará en forma vertical, y con la ayuda de un prisma, este nos dará la referencia horizontal que estamos buscando. Este nivel tiene una burbuja circular (ojo de buey) que puede no estar completamente centrada, pero el compensador automático hace justamente eso, compensar, este adelanto resultó tan provechoso, que se incorporó en los teodolitos mas precisos y en las estaciones totales, aun cuando su funcionamiento puede variar, el principio sigue siendo el mismo.
Por sus ventajas los niveles automáticos son los que mas fácilmente se encuentran en el mercado, dentro de las características que hay que observar al comparar instrumentos es el número de aumentos de la lente que puede ser de 20x hasta 32x, esto representa que tanto aumenta la imagen al ver a través del nivel, si las distancias son cortas (menores a 10 metros) tal vez no resulte algo trascendente, pero al tratar de ver un estadal graduado al milímetro a 100 metros si es importante contar con el nivel con mas aumentos, o si se requiere gran precisión incluso en distancias cortas se recomendaria el de 32 aumentos. Se ve de las especificaciones que el número de aumentos esta ligado con la precisión del equipo, que se expresa en milímetros por kilometro nivelado ida y vuelta, así si por ejemplo un nivel tiene una precisión de ± 1.5 mm/km, significa que en una nivelación de un kilometro ida y vuelta se tiene un error de mas menos un milímetro y medio.
En términos generales se podría decir que el rango de un nivel de 20 aumentos es de 50 mts, 22x.-65mts, 24x.-79mts, 26x.-92mts, 28x.-104mts, 30x.-115mts, 32x.-125mts, pero si usamos un nivel de muchos aumentos a distancias cortas tendremos mayor facilidad para tomar las lecturas en el estadal y eventualmente mas precisión, así si por ejemplo se quiere nivelar una maquinaria, en donde las distancias pueden no superar los 10 mts, se recomendaría usar el nivel de 32 aumentos, para tener la máxima precisión posible.
Si bien el nivel solo sirve para medir desnivel, últimamente se les ha incorporado una graduación en el giro horizontal, permitiendo hacer mediciones de ángulos con una precisión de medio grado, siendo practico en obra para medir o trazar ángulos horizontales que no requieren gran precisión.
Existe un accesorio llamado placa planoparalela o micrómetro este accesorio permite realizar mediciones a la décima de milímetro, si bien se puede colocar en cualquier nivel, se recomienda solo para niveles con 32 aumentos, este accesorio es de gran ayuda para trabajos que requieren mucha precisión., En algunos casos es incluso aconsejable usar estadal inbar para eliminar error por variación en la temperatura y dilatación de los estadales de aluminio.
Los niveles láser fueron y continúan siendo una novedad creyendo alguna personas que son mas precisos, pero la realidad es otra, existen los que solo proyectan una linea en una pared, su nombre correcto es crossliner se usan principalmente en interiores, ya que en exteriores con la luz del sol resulta difícil ver la linea que proyecta en una pared por ejemplo, linea que por cierto tiene entre 1 y 2 milímetros de ancho, así que si precisión. En un kilometro será de 1 centímetro comparando con un nivel óptico, hay también niveles láser que poseen un sensor, este se puede usar en exteriores y a mayores distancias, ya que no depende del ojo humano, si no de un sensor especializado en ver la luz láser, hay equipos de diferentes precios y precisiones, si adquiere un nivel asegurese que este sea de calidad y que este correctamente calibrado, de lo contrario le recomiendo mejor un nivel de manguera.
No todo es malo en los niveles láser, una de sus ventajas es que lo puede usar una sola persona: pone el nivel en un punto céntrico y va a medir directamente en los puntos que requiere, también si tiene varios instaladores (de marcos por ejemplo) trabajando al mismo tiempo, cada uno puede tener un sensor y estar usando la misma referencia al mismo tiempo. También son muy prácticos montados en maquinaria de excavación o aplanado, eliminando la necesidad de detener la maquinaria para poner un estadal y hacer la medición, con un nivel láser el operador de la maquina puede saber instantáneamente si esta por arriba o por abajo del nivel deseado.
Por ultimo están los niveles electrónicos, estos funcionan como los niveles ópticos, y adicionalmente pueden hacer lecturas electrónicamente con estadales con código de barras, esto resulta muy practico, ya que la medición es muy rápida, y se eliminan errores de apreciación o lectura, incluso de dedo, ya que estos tienen memoria para almacenar y procesar los datos, pueden desplegar en pantalla una resolución de décima de milímetro, y medir distancias con una resolución de un centímetro.
Si bien un teodolito o una estación total se puede usar como nivel, las mediciones no serán tan precisas, siendo que el nivel es un instrumento especializado, pero si no requiere gran precisión. Se puede utilizar una estación o un teodolito ajustando el ángulo vertical a 90 grado
cimentacion
CIMENTACION
Se denomina cimentación al conjunto de elementos estructurales cuya misión es transmitir las cargas de la edificación al suelo. Debido a que la resistencia del suelo es, generalmente, menor que los pilares o muros que soportará, el área de contacto entre el suelo y la cimentación será proporcionalmente más grande que los elementos soportados (excepto en suelos rocosos muy coherentes).
Importancia de cimentación
La cimentación es importante por que es el grupo de elementos que soportan a la superestructura; para lo cual se utiliza la llamada zapata de cimentacion, esta divide las cargas de la edificacion en partes iguales de manera que ninguna exceda a la otra, esto solamente no se da cuando se trata de un terreno de piedra.
Cimentaciones superficiales
Son aquellas que se apoyan en las capas superficiales o poco profundas del suelo, por tener éste suficiente capacidad portante o por tratarse de construcciones de importancia secundaria y relativamente livianas.
En estructuras importantes, tales como puentes, las cimentaciones, incluso las superficiales, se apoyan a suficiente profundidad como para garantizar que no se produzcan deterioros. Las cimentaciones superficiales se clasifican en:
Cimentaciones ciclópeas
En terrenos cohesivos donde la zanja pueda hacerse con paramentos verticales y sin desprendimientos de tierra, el cimiento de concreto ciclópeo (hormigón) es sencillo y económico. El procedimiento para su construcción consiste en ir vaciando dentro de la zanja piedras de diferentes tamaños al tiempo que se vierte la mezcla de concreto en proporción 1:3:5, procurando mezclar perfectamente el concreto con las piedras, de tal forma que se evite la continuidad en sus juntas. Este es un sistema que ha quedado prácticamente en desuso, se usaba en construcciones con cargas poco importantes; exceptuando las construcciones auxiliares como vallas de cerramiento en terrenos suficientemente resistentes. El hormigón ciclópeo se realiza añadiendo piedras más o menos grandes a medida que se va hormigonando para economizar material. Utilizando este sistema, se puede emplear piedra más pequeña que en los cimientos de mampostería hormigonada. La técnica del hormigón ciclópeo consiste en lanzar las piedras desde el punto más alto de la zanja sobre el hormigón en masa, que se depositará en el cimiento. Precauciones:
Tratar que las piedras no estén en contacto con la pared de la zanja.
Que las piedras no queden amontonadas.
Alternar en capas el hormigón y las piedras.
Cada piedra debe quedar totalmente envuelta por el hormigón.
Se denomina cimentación al conjunto de elementos estructurales cuya misión es transmitir las cargas de la edificación al suelo. Debido a que la resistencia del suelo es, generalmente, menor que los pilares o muros que soportará, el área de contacto entre el suelo y la cimentación será proporcionalmente más grande que los elementos soportados (excepto en suelos rocosos muy coherentes).
Importancia de cimentación
La cimentación es importante por que es el grupo de elementos que soportan a la superestructura; para lo cual se utiliza la llamada zapata de cimentacion, esta divide las cargas de la edificacion en partes iguales de manera que ninguna exceda a la otra, esto solamente no se da cuando se trata de un terreno de piedra.
Cimentaciones superficiales
Son aquellas que se apoyan en las capas superficiales o poco profundas del suelo, por tener éste suficiente capacidad portante o por tratarse de construcciones de importancia secundaria y relativamente livianas.
En estructuras importantes, tales como puentes, las cimentaciones, incluso las superficiales, se apoyan a suficiente profundidad como para garantizar que no se produzcan deterioros. Las cimentaciones superficiales se clasifican en:
Cimentaciones ciclópeas
En terrenos cohesivos donde la zanja pueda hacerse con paramentos verticales y sin desprendimientos de tierra, el cimiento de concreto ciclópeo (hormigón) es sencillo y económico. El procedimiento para su construcción consiste en ir vaciando dentro de la zanja piedras de diferentes tamaños al tiempo que se vierte la mezcla de concreto en proporción 1:3:5, procurando mezclar perfectamente el concreto con las piedras, de tal forma que se evite la continuidad en sus juntas. Este es un sistema que ha quedado prácticamente en desuso, se usaba en construcciones con cargas poco importantes; exceptuando las construcciones auxiliares como vallas de cerramiento en terrenos suficientemente resistentes. El hormigón ciclópeo se realiza añadiendo piedras más o menos grandes a medida que se va hormigonando para economizar material. Utilizando este sistema, se puede emplear piedra más pequeña que en los cimientos de mampostería hormigonada. La técnica del hormigón ciclópeo consiste en lanzar las piedras desde el punto más alto de la zanja sobre el hormigón en masa, que se depositará en el cimiento. Precauciones:
Tratar que las piedras no estén en contacto con la pared de la zanja.
Que las piedras no queden amontonadas.
Alternar en capas el hormigón y las piedras.
Cada piedra debe quedar totalmente envuelta por el hormigón.
la brujula
Poco se sabe sobre el origen de la brújula, aunque los chinos afirman que ellos la habían inventado más de 2.500 años antes de Cristo. Y es probable que se haya usado en los países del Asia Oriental hacia el tercer siglo de la era cristiana. Y hay quienes opinan que un milenio más tarde, Marco Polo la introdujo en Europa.
Los chinos usaban un trocito de caña conteniendo una aguja magnética que se hacía flotar sobre el agua, y así indicaba el norte magnético. Pero en ciertas oportunidades no servía, pues necesitaba estar en aguas calmas, por lo que fue perfeccionada por los italianos.
El fenómeno del magnetismo se conocía; se sabía desde hacía mucho tiempo que un elemento fino de hierro magnetizado señalaba hacia el norte, hay diversas teorías sobre quién inventó la brújula. Ya en el siglo XII existían brújulas rudimentarias. En 1269, Pietro Peregrino de Maricourt, alquimista de la zona de Picardía, describió y dibujó en un documento, una brújula con aguja fija (todavía sin la rosa de los vientos). Los árabes se sintieron muy atraídos por este invento; la utilizaron inmediatamente, y la hicieron conocer en todo Oriente.
La brújula (de "buxula", cajita hecha de boj o boxus) es un instrumento magnético que aparece descripto en La Divina Comedia de Dante, de la siguiente manera: "Los navegantes tienen una brújula que en el medio tiene enclavada con un perno, una ruedecilla de papel liviano que gira en torno de dicho perno; dicha ruedecilla tiene muchas puntas y una de ellas tiene pintada una estrella traspasada por una punta de aguja; cuando los navegantes desean ver dónde está la tramontana, marcan dicha punta con el imán."
Otros historiadores señalan que la primera brújula de navegación práctica fue inventada por un armero de Positano (Italia), Flavio Gioja, entre los siglos XIV y XV. Él fue quien la perfeccionó suspendiendo la aguja sobre una púa de forma similar a la que actualmente conserva. Y la encerró en una cajita con tapa de vidrio. Más tarde apareció la "rosa de los vientos", un disco con marcas de divisiones de grados y subdivisiones, que señalaba 32 direcciones celestes, y que fue la brújula marina que se utilizó hasta fines del siglo XIX.
Posteriormente se logró un nuevo avance, cuando el físico inglés Sir William Thomson (Lord Kevin) logró independizar a este instrumento, del movimiento del barco durante tempestades, y anuló los efectos de las construcciones del barco sobre la brújula magnética. Utilizó ocho hilos delgados de acero sujetos en la rosa de los vientos, en lugar de una aguja pesada. Y era llenada con aceite para disminuir las oscilaciones.
En los comienzos del siglo XX aparece la brújula giroscópica o también llamada girocompás. Consiste en un giróscopo, cuyo rotor gira alrededor de un eje horizontal paralelo al eje de rotación de la tierra. Se le han agregado dispositivos que corrigen la desviación, la velocidad y el rumbo; y en los transatlánticos y buques suele estar conectado eléctricamente, a un piloto automático. Este girocompás señala el norte verdadero, mientras que la brújula magnética, justamente, señalaba el norte magnético.
Los chinos usaban un trocito de caña conteniendo una aguja magnética que se hacía flotar sobre el agua, y así indicaba el norte magnético. Pero en ciertas oportunidades no servía, pues necesitaba estar en aguas calmas, por lo que fue perfeccionada por los italianos.
El fenómeno del magnetismo se conocía; se sabía desde hacía mucho tiempo que un elemento fino de hierro magnetizado señalaba hacia el norte, hay diversas teorías sobre quién inventó la brújula. Ya en el siglo XII existían brújulas rudimentarias. En 1269, Pietro Peregrino de Maricourt, alquimista de la zona de Picardía, describió y dibujó en un documento, una brújula con aguja fija (todavía sin la rosa de los vientos). Los árabes se sintieron muy atraídos por este invento; la utilizaron inmediatamente, y la hicieron conocer en todo Oriente.
La brújula (de "buxula", cajita hecha de boj o boxus) es un instrumento magnético que aparece descripto en La Divina Comedia de Dante, de la siguiente manera: "Los navegantes tienen una brújula que en el medio tiene enclavada con un perno, una ruedecilla de papel liviano que gira en torno de dicho perno; dicha ruedecilla tiene muchas puntas y una de ellas tiene pintada una estrella traspasada por una punta de aguja; cuando los navegantes desean ver dónde está la tramontana, marcan dicha punta con el imán."
Otros historiadores señalan que la primera brújula de navegación práctica fue inventada por un armero de Positano (Italia), Flavio Gioja, entre los siglos XIV y XV. Él fue quien la perfeccionó suspendiendo la aguja sobre una púa de forma similar a la que actualmente conserva. Y la encerró en una cajita con tapa de vidrio. Más tarde apareció la "rosa de los vientos", un disco con marcas de divisiones de grados y subdivisiones, que señalaba 32 direcciones celestes, y que fue la brújula marina que se utilizó hasta fines del siglo XIX.
Posteriormente se logró un nuevo avance, cuando el físico inglés Sir William Thomson (Lord Kevin) logró independizar a este instrumento, del movimiento del barco durante tempestades, y anuló los efectos de las construcciones del barco sobre la brújula magnética. Utilizó ocho hilos delgados de acero sujetos en la rosa de los vientos, en lugar de una aguja pesada. Y era llenada con aceite para disminuir las oscilaciones.
En los comienzos del siglo XX aparece la brújula giroscópica o también llamada girocompás. Consiste en un giróscopo, cuyo rotor gira alrededor de un eje horizontal paralelo al eje de rotación de la tierra. Se le han agregado dispositivos que corrigen la desviación, la velocidad y el rumbo; y en los transatlánticos y buques suele estar conectado eléctricamente, a un piloto automático. Este girocompás señala el norte verdadero, mientras que la brújula magnética, justamente, señalaba el norte magnético.
miércoles, 17 de febrero de 2010
domingo, 14 de febrero de 2010
¿QUE ES TOPOGRAFIA?
Es la ciencia que estudia el conjunto de principios y procedimientos que tienen por objeto la representación grafica de la superficie de la tierra, con sus formas y detalles, tanto naturales como artificiales. Se divide en:
* PLANIMETRIA: estudia el conjunto de métodos y procedimientos que tienden a conseguir la representación a escala de todos los detalles interesantes del terreno sobre una superficie plana.
* ALTIMETRIA: estudia el conjunto de métodos y procedimientos para representar y determinar la altura: también llamada “cota” de cada uno de los puntos, respecto al plano de referencia.
Suscribirse a:
Entradas (Atom)